Описание контроллера заряда акб, детальное руководство по изготовлению

Описание контроллера заряда акб, детальное руководство по изготовлению

Контроллер заряда и балансир li-ion аккумулятора 18650

Контроллер заряда – встроенная схема защиты в аккумуляторе, которая предотвращает его сильную разрядку или перезарядку, контролирует силу тока и температуру, задает время окончания заряда. Как работает контроллер заряда в li-ion аккумуляторе, для чего он нужен?

Устройство li-ion аккумулятора 18650

Контроллер зарядки литий-ионного аккумулятора производят корпорации: Sony, LG, Sanyo, Panasonic, Samsung, ATL, HYB. Остальные производители перекупают элементы и выдают за собственный продукт.

Максимальная емкость ионных аккумуляторов 18650 – 3600 мА-ч.; они, в отличие от батарей, могут многократно перезаряжаться. Цифра 18650 – форм-фактор, указывающий на длину аккумулятора (65 мм) и его диаметр (18 мм).

Основные характеристики литий-ионного аккумулятора 18650:

  • максимально допустимое напряжение – 4,2 В (небольшие перезарядки губительно сказываются на сроке службы);
  • минимально допустимое напряжение – 2,75 В (при понижении до 2 В заряд не подлежит восстановлению);
  • минимально допустимая температура –20 °C 0 С (зарядить на морозе невозможно);
  • максимально допустимая температура +60 °C 0 С (при превышении показателей возможны взрыв и возгорание);
  • измерение емкости в ампер-часах – полная зарядка выдает 1 А тока в течение 60 минут, 2 А тока – 30 минут, 15 А тока – 4 минуты.

Литий-ионный АКБ преобразовывает химическую энергию в электрическую, поэтому возникает ток, приводящий в действие то или иное устройство. Такие батарейки оснащаются специальной защитной схемой, которая контролирует уровень ее нагрева и циклы работы. При перегреве и спаде напряжения до 2,7 В – контроллер автоматически прекращает работу АКБ.

Предназначение контроллера зарядки

Контроллер регулирует процесс заряда и разрядки аккумулятора. Если напряжение падает ниже 3 В, защита отключает банку от потребителя тока: устройство выключается. Также защитная схема предотвращает короткие замыкания. Некоторые виды защитных плат имеют терморезистор, который защищает элементы АКБ от перегрева.

Все платы осуществляют контроль за:

  • переразрядом батарейки;
  • перезарядом;
  • током нагрузки;
  • температурой.

Имея под рукой защитную плату, можно переделать старые АКБ шуруповерта, дрели на литиевые батареи, отличающиеся долгим сроком службы.

Особенности контроллера для зарядки li-ion аккумулятора 18650

Контроллер для литиевых аккумуляторов 18650 расположен сверху корпуса, чем удлиняет само устройство. Плата расположена впереди отрицательной клеммы, защищая АКБ от перезарядки/переразрядки. Основная страна-производитель – Китай.

Как только защита будет установлена, корпус помещают в специальную пленку с термоусадкой. Из-за дополнительной защитной конструкции корпус удлиняется и утолщается, в редких случаях – не помещается в гнездо. В случае применения аккумулятора 18650 для создания тока в 12 В с общим контроллером заряда прерыватели не устанавливаются.

Виды контроллеров

Контроллеры для li-ion аккумуляторов отличаются ценой, производителем и внутренними элементами.

  1. HX-3S-A02 (цена – 150 рублей). Производитель – Китай, внутри чип S-8254AA, который защищает литий-ионные элементы от сильного заряда/разряда, короткого замыкания. К нему можно подключить три АКБ типа 18650 (максимальный ток – 10 А). Размер защиты – 50х16 мм.
  2. FDC-2S-2 (цена – 50 рублей). Производитель – Китай, чип HY2120, предотвращает сильный заряд/разряд, короткие замыкания. Возможно подключение двух АКБ типа 18650 (максимальный ток – 3А). Параметры защиты – 36х6х1 мм.
  3. HX-2S-01 (цена – 70 рублей). Производство – Китай, чип HY2120, уберегает от сильного заряда/разряда, короткого замыкания. Подключаются две АКБ типа 18650 (максимальный ток – 3 А). Размер защиты – 36х6х1 мм.
  4. HX-3S-D01(цена – 220 рублей). Производство – Китай, чип S-8254AA, контролирует сильный заряд/разряд, короткое замыкание. К нему можно подсоединить три АКБ типа 18650 (максимальный ток – 20 А). Размер защитной платы – 51х23 мм.
  5. HX-3S-D02 (цена – 200 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. К нему подключаются три АКБ типа 18650 (максимальный ток – 10 А). Размер схемы – 50х16 мм.
  6. HX-4S-A01 (цена – 250 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. Можно подсоединить четыре АКБ типа 18650 (максимальный ток – 6 А). Размер микросхемы – 67х16мм.

Схемы контроллеров

Ошибочно думать, что контроллеры заряда-разряда существуют: разрядом управлять не нужно, ток находится в прямой зависимости от нагрузки. Главное – это контроль за напряжением и температурой, временем завершения заряда. Под таким контроллером подразумевают плату, защищающую АКБ от глубокой зарядки/разрядки.

Микросхемы состоят из различных электронных элементов, поэтому имеют вариации:

  1. DW01-Plus. Самая популярная и простая микросхема, находится под самоклейкой с надписями, которой обернут аккумулятор. Плата шестиногая, полевые транзисторы соединены в один корпус восьминогой сборкой. Сопротивление транзисторов создает измерительный шунт: возникает большой порог срабатывания от одного устройства к другому. В полевики встроены паразитные светодиоды, благодаря которым АКБ заряжается даже при срабатывании защиты от глубокой разрядки.
  2. S-8241 Series. Разработчик микросхемы – фирма SEIKO, специализирующаяся на литий-ионных и литий-полимерных аккумуляторах. Защитные ключи срабатывают при 2,3 и 4,35 вольтах и при спаде напряжения на FET1-FET2 до 200 мВ.
  3. LV5114OT. Защитная плата срабатывает при 2,5 и 4,25 вольтах, что предотвращает переразряд/перезаряд.
  4. R5421N Series. Среднее потребление энергии в рабочем состоянии – 3 мкА, в состоянии покоя – 0,3 мкА. Данная микросхема имеет ряд модификаций, которые разнятся величиной напряжения срабатывания при перезаряде.

Причины блокировки контроллером li-ion аккумулятора 18650

Главная причина – возникновение короткого замыкания из-за превышения предельно допустимого напряжения тока внутри АКБ. Микросхема разрывает электрическую цепь. Для разблокировки батареи достаточно зарядить ее.

Вторая причина – глубокий разряд аккумулятора. При глубоком некритичном разряде батарейку можно разблокировать с помощью зарядного устройства.

При разряжении до критичного состояния устройство не включится: внутренние химические процессы приводят к образованию металлических литиевых кристаллов, которые создают опасный контакт между положительным и отрицательным полюсами, приводящий к взрыву.

Балансировочная плата для li-ion аккумулятора 18650

Какую функцию выполняет балансир в литийных аккумуляторах? Если последовательно соединять несколько банок, их напряжение складывается в общую сумму, а емкость батареи равняется самой низкой из всех элементов.

Чтобы предотвратить перезаряд самой «ленивой» части, ее отключают от питания, что позволяет оставшимся частям продолжать заряжаться. Балансир контролирует равномерно распределяющийся заряд, поэтому его включают в цепи с последовательным соединением элементов. При параллельном соединении в балансировке нет необходимости: здесь равномерное распределение заряда. Балансировочная плата обычно входит в общий защитный корпус MBS и носит название «балансировочный шлейф».

Лучшие аккумуляторы 18650 на «Алиэкспресс»

На ресурсе «Алиэкспресс» можно купить разные li-ion АКБ, отличающиеся ценой и производителем. Из-за большого спроса на товар велико число подделок. Качественная модель отличается от подделки рядом признаков. Так, продукция высокого качества имеет емкость в 3600 А/ч и стоит гораздо дороже, среднего качества – 3000–3200 А/ч и стоит в несколько раз дешевле.

Как восстановить Li-ion АКБ

При полном выходе из строя батареи лучшее решение – утилизация, в ситуации крайней необходимости ее можно реанимировать различными способами:

  1. Помещение АКБ в морозильник: резкая смена температуры в ряде случаев приводит к его временному запуску. В морозильной камере необходимо держать ее в течение 40–50 минут, после чего извлечь и незамедлительно подключить к зарядному устройству на 5 минут. Подождать разогрева батарейки до комнатной температуры и полностью зарядить.
  2. Вскрытие АКБ и отсоединение защитной микросхемы. Процедура проводится крайне осторожно. Для начала необходимо измерить тестером напряжение на контактах (дальнейшие действия возможны только при нулевом показателе), отсоединить защитную плату, замерить показатели напряжения. Дальше подключить зарядное устройство к аккумулятору на 10–15 минут, установив такие показатели: 100 мА, 4,2 В. При перегреве батареи зарядку следует отсоединить. Как только она полностью зарядится, защитная схема возвращается на место.

Итак, контроллер для литий-ионных батарей выполняет важную функцию – не позволяет напряжению вырасти до 4,2 В и понизиться до 2,75 В (оптимальное напряжение для АКБ на литии – 3,7 вольта). Сильная разрядка и повышенная зарядка приводят к выходу устройства из строя.

Читать еще:  Практичные рекомендации автоспециалиста по устранению проблем с автомобилем

Описание работы контроллера заряда SOLARMASTER. Режим зарядного устройства

В данной записи представлено описание работы контроллера заряда АКБ SolarMaster в режиме зарядного устройства. Если читатель увидел в заголовке некоторую неоднозначность (“масло-масляное”), ибо в каком еще режиме работать контроллеру заряда, если не в режиме зарядного устройства, напомним, что наш контроллер заряда может работать в двух режимах: режим интеллектуального зарядного устройства АКБ с отключаемым выходом питания нагрузки и режим стабилизированного источника электропитания.

Содержание

Подключение к контроллеру заряда

Подключение АКБ, панели / источника питания и нагрузки производится в строгом соответствии со схемой, приведенной на рисунке. Не соединяйте выводы солнечной панели и АКБ с цепями нагрузки (как общего провода, так и «плюса питания») с целью обеспечения питания узлов, измерения зарядных токов и проч. При необходимости параметры зарядного и разрядного токов, напряжений на АКБ, на солнечной панели запрашиваются у контроллера заряда по протоколу Modbus RTU (линия RS485, USB 2.0). Недопустимо подключение нагрузки без подключения АКБ (с подключенной солнечной панелью). Параметры подключаемых блоков (напряжение АКБ, мощность нагрузки, источника питания / солнечной панели) должны строго соответствовать рекомендуемым (см. запись о технических параметрах контроллера заряда АКБ). В противном случае устройство будет функционировать некорректно. На любые поломки, вызванные работой устройства в экстремальных режимах (предельные и завышенные мощности нагрузки, напряжение источника питания), гарантия не распространяется.

При подключении устройства тщательно проверяйте полярность подключаемых блоков (соответствующие клеммы на устройстве помечены как «+» и «–»). Неправильное подключение клемм аккумулятора или источника питания приведет к выходу контроллера из строя. На любые повреждения, вызванные переполюсовкой АКБ и/или источника питания, не распространяется гарантия, поскольку данная поломка является следствием некорректной эксплуатации устройства.

Настройка параметров работы контроллера заряда

Перед эксплуатацией зарядного устройства скачайте программное обеспечение SolarMaster Control с сайта для настройки работы контроллера заряда. Настройка контроллера осуществляется с помощью ПО SolarMaster Control записью соответствующих регистров, отвечающих за подлежащие настройке параметры, по протоколу Modbus RTU.

Для настройки работы контроллера SolarMaster подключите устройство к ПК (если устройство подключается к ПК впервые, дождитесь установки драйвера). Запустите приложение SolarMaster Control. Устройство автоматически подключится к программе. Если приложение было запущено до подключения контроллера заряда к ПК, нажмите кнопку «Подключить» в окне SolarMaster Control программы. Если программа выдает сообщение: «Устройство SolarMaster не подключено к этому компьютеру либо порт занят другой программой», нужно убедиться в подключении устройства к ПК, проверить исправность соединительного кабеля, попробовать подключить контроллер заряда к другому USB разъему ПК. Если контроллер не опрашивается после проверки выше указанных моментов, свяжитесь с техподдержкой (см. раздел «Контакты»).

При успешном подключении устройства программа начнет отображать данные измерений на мнемосхеме зарядного устройства (вкладка «Мнемосхема ЗУ», см. рисунок). На мнемосхеме схематически изображено подключение солнечной панели, АКБ и нагрузки к контроллеру заряда SolarMaster, а также измеряемые устройством значения контролируемых параметров.

Обозначения на рисунке (пояснения к мнемосхеме программы):

1 значения напряжения питания МК, температуры в корпусе устройства, времени непрерывной работы с момента перезагрузки
2 принудительное включение/отключение нагрузки
3 автоматическое включение нагрузки в темное время суток (имитация работы фотореле)
4 сила тока в цепи нагрузки, напряжение на нагрузке, мощность, потребляемая нагрузкой, энергия, потребленная нагрузкой
5 напряжение на солнечной панели (источника питания), сила тока, потребляемого от солнечной панели (источника питания), мощность, отбираемая от солнечной панели, энергия, потребленная от панели
6 напряжение на АКБ, сила тока заряда АКБ, мощность заряда/разряда АКБ (в зависимости от знака)
7 энергия заряда и энергия разряда АКБ

Бегущими стрелочками на мнемосхеме представлен заряд АКБ и/или разряд на нагрузку.

Настройка параметров заряда АКБ осуществляется на вкладке «Конфигурирование ЗУ». На вкладке «Быстрая настройка для свинцово-кислотных АКБ» нужно выбрать номинальное напряжение АКБ (12/24В), емкость в А-ч, тип аккумулятора (абсорбированный, гелевый, заливной), а также режим эксплуатации АКБ (максимальная емкость либо максимальный срок службы). При выборе максимального срока службы параметры цикла заряда/разряда будут ниже предельно-допустимых для заданного типа аккумуляторов. В случае, когда необходимо максимальное использование емкости, будут записаны предельно-допустимые параметры эксплуатации АКБ.

После выбора настроек нажмите кнопку «Применить». В зависимости от выбранных вами настроек в контроллер заряда будет записан набор установок (зарядный ток, напряжение начала и окончания заряда и т.д.), которые приведены на вкладке «Подробная настройка зарядного устройства». На вкладке «Подробная настройка зарядного устройства» вы можете вручную откорректировать параметры заряда АКБ (в соответствующем поле введите требуемое значение параметра и нажмите кнопку «Записать»).

Параметры заряда аккумулятора выбираются только исходя из технических характеристик используемых АКБ. Не записывайте произвольные значения, не соответствующие рекомендуемым для заданного типа аккумуляторов, в устройство. Некорректные параметры заряда и разряда приведут к быстрому невосстановимому разрушению электродов АКБ. Строго следуйте технической документации на аккумулятор.

Рекомендации по выбору параметров управления зарядом и разрядом АКБ

Напряжение окончания заряда

Напряжение окончания заряда задается с целью недопущения недозаряда и перезаряда аккумулятора. Если напряжение на АКБ выше предельно-допустимого значения, начинается интенсивный электролиз электролита и ускоряется коррозия решеток положительных пластин, что приводит к уменьшению срока службы аккумулятора. Недозаряд сопровождается деградацией активного материала отрицательных пластин и также сокращает срок службы АКБ. Напряжение окончания заряда определяется следующим образом:

Напряжение окончания заряда = Напряжение циклического заряда элемента x Кол-во элементов

Для свинцово-кислотных аккумуляторов напряжение циклического заряда лежит в диапазоне 2,35 … 2,45 В/эл. В англоязычной документации данный параметр указан как Recommended charge voltage. Для AGM свинцово-кислотных аккумуляторов напряжение окончания составляет 2,4 x 6 = 14,4В.

Напряжение начала заряда

Напряжение начала заряда обычно выбирается на 0,5В меньше, чем напряжение поддержания заряда (напряжение постоянного подзаряда при капельном методе).

К примеру, если напряжение поддержания заряда составляет 13,6В (типично для свинцово-кислотных аккумуляторов), то напряжение начала заряда: 13,6В – 0,5В = 13,1В.

Максимальный ток заряда

Максимальный ток заряда должен быть ограничен на уровне 0,1 x Емкость АКБ (А-ч) – 10% от номинальной емкости аккумулятора.

Напряжение отключения нагрузки

Глубокий разряд АКБ приводит к необратимой сульфатации пластин, росту внутреннего сопротивления (и как, следствие, значительному снижению емкости), внутреннему короткому замыканию и досрочному выходу из строя. С целью предотвращения глубокого разряда АКБ необходимо задать напряжение отключения нагрузки, которое определяется следующим образом:

Напряжение отключения нагрузки (В) = Конечное напряжение (В/эл) x Кол-во ячеек.

Конечное напряжение обычно приводится в технической документации на весь ряд АКБ производителя в величине, приведенной на один элемент (ячейку) АКБ. Количество последовательно соединенных элементов задается для конкретного типа аккумуляторов. В англоязычной документации данный параметр указан как cut-off voltage, absolute minimum discharge voltage в единицах измерения Vpc (Voltage per cell). Например, для AGM аккумулятора SBS30 производства Enersys конечное напряжение составляет 1.80 В/эл, в АКБ входит 6 элементов. Напряжение отключения нагрузки в этом случае составляет 1,80 В/эл x 6 эл.= 10,8 В.

Напряжение включения нагрузки

Напряжение включения выбирается исходя из типа АКБ и мощности нагрузки. Необходимо убедиться, что при выбранном значении напряжения включения аккумулятор заряжен достаточно для питания нагрузки. В противном случае подключение нагрузки «просадит» напряжение АКБ, и нагрузка будет отключена контроллером.

Коэффициент температурной коррекции

Вследствие наличия выраженной температурной зависимости активности электрохимических процессов при работе АКБ, необходимо производить термокомпенсацию параметров заряда. Все параметры работы АКБ на вкладке «Подробная настройка зарядного устройства» задаются для номинальной температуры 25 0 С! Поскольку зачастую эксплуатация аккумуляторов проводится при температуре, отличной от номинального значения, необходимо задавать коэффициент температурной коррекции. В некоторых случаях в технической документации коэффициент термокомпенсации не указывается. В этом случае обычно присутствует таблица с рекомендуемыми параметрами для ряда температур; рассчитайте коэффициент, согласно следующему выражению:

Коэффициент ТК = (Напряжение заряда (Т1) – Напряжение заряда (Т2)) / (Т1 – Т2)/ Напряжение заряда (Т1),

где Т1 и Т2 – значения температур, при которых заданы напряжения заряда АКБ.

Читать еще:  Меняем ремень грм lada granta (8 клапанов) сами: пошаговая инструкция с фото

Собственно говоря, на этом описание работы контроллера заряда АКБ в режиме зарядного устройства закругляем. Про режим стабилизированного источника питания читаем дальше.

Контроллер заряда аккумулятора на Алиэкспресс: лучшие модели из представленного ассортимента

Дата публикации: 19 июня 2019

В электрике нет лишних мелочей, и каждое устройство играет свою, строго определенную роль. С этим утверждением могут не согласиться некоторые сторонники использования солнечной энергии для заряда аккумуляторных батарей. Часто они напрямую подключают аккумулятор к солнечной батарее и успешно заряжают его при наличии даже рассеянного солнечного света. Но позже, когда аккумулятор выходит из строя гораздо раньше номинального срока эксплуатации, они вряд ли догадаются, что причина этого явления – в неуместной экономии. Что же происходит на самом деле?

  • После прямого подключения батареи к аккумулятору уровень заряда начинает расти до предельного значения напряжения, которое зависит от типа аккумулятора.
  • Как только будет достигнут предельный уровень напряжения, пользователю необходимо сразу же выключить устройство. В противном случае возникнет явление перезаряда, при котором электролитическая жидкость начинает активно выкипать. Таким образом, срок службы аккумулятора резко сократится.
  • Есть и еще одна проблема. Выключение аккумулятора сразу по достижении им предельного значения напряжения означает его зарядку лишь на уровне 85-90%. Для полного заряда необходимо еще некоторое время находиться под напряжением. Систематически повторяющаяся неполная зарядка негативно скажется на рабочем ресурсе аккумулятора, и срок его эксплуатации существенно сократится.

Решение проблемы – покупка контроллера заряда на Алиэкспресс для тех, кто хочет подешевле, или в ближайшем магазине электротехнических товаров. Причем желательно отдать предпочтение модели с так называемой PWM-функцией. Рассмотрим преимущества ее применения:

  • Подключение аккумулятора к солнечной батарее через контроллер простого типа будет прервано сразу по достижении предельного уровня напряжения. Но, как сказано выше, уровень заряда будет находиться в пределах 90%, поскольку условия по определенному времени выдержки аккумулятора не было соблюдено.
  • При использовании PWM-контроллера уровень заряда будет доведен до 100% благодаря явлению широтно-импульсного преобразования (английская аббревиатура PWM). При достижении предельного значения «умное» устройство снизит напряжение, подаваемое с солнечной батареи, и продержит аккумулятор в заряжаемом состоянии еще несколько часов.

Также в числе важных параметров нового контроллера заряда аккумулятора с Алиэкспресс опции:

  • температурной компенсации зарядного напряжения;
  • выбора типа аккумулятора, поскольку различные модели имеют разные уровни напряжения в одинаковых режимах;
  • учета температуры аккумуляторной батареи, что важно для повышения точности заряда.

Обзор лучших моделей контролеров заряда аккумулятора на Алиэкспресс

Ниже представлено описание моделей контроллеров, характеристики которых были по достоинству оценены многочисленными покупателями:

Предназначена для свинцово-кислотных аккумуляторов. Диапазон напряжения – от 6 до 60В. Модель оснащена ЖК-дисплеем XY-L30A. На мониторе отображаются напряжение, процент и продолжительность заряда. На базе устройства реализована опция автоматического контроля заряда. Также имеется функция установки времени заряда, формат – 24 часа, максимальная продолжительность – 100 часов.

Данный контроллер заряда аккумулятора с Алиэкспресс адаптирован для работы со свинцово-кислотными аккумуляторами. Рабочие параметры и время зарядки отображаются на ЖК дисплее. В числе предлагаемых функций: автоматический контроль, установка времени, управление с мобильных устройств и ПК через последовательное подключение.

Рассчитан на входное напряжение в пределах 6-60В. Модель отличается высокой точностью отображения и управления – 0,1В. Уровень заряда отображается на ЖК-мониторе. Допускает установку уровней начального и конечного напряжения. Имеет компактные размеры 81*54*18 мм.

Встроенный промышленный микроконтроллер, на базе которой реализована 4-х ступенчатая функция широтно-импульсного преобразования PWM. Работает со свинцово-кислотными и гелиевыми аккумуляторными батареями. Рассчитан на напряжение 12-24В и силу тока 10A, 20A, 30A в зависимости от модификации. Все рабочие параметры отображаются на ЖК-дисплее. Также в числе достоинств модели – встроенная защита от короткого замыкания, обратная защита, защита от перегрузки. В процессе работы отмечен низкий уровень нагревания устройства.

Контроллер с PWM-функцией. На LED-индикаторе отображается входное и выходное напряжение, а также – уровень заряда батареи в реальном времени. Может подключаться и управляться с компьютера через USB-порт. Возможен выбор одного из трех режимов заряда – быстрый, стабильный и поддерживающий с опцией контроля заряда. Встроена защита от перезаряда, перегрузки и от короткого замыкания.

Модель контроллера заряда аккумулятора с Алиэкспресс с PWM-функцией в нескольких вариантах исполнения, в зависимости от силы тока 30A, 20A, 10A напряжением 12-24В и мощностью от 120 до 360Вт. Подходит для различных типов свинцово-кислотных батарей с таймером нагрузки. Установлен двойной светодиодный дисплей. Возможно подключение и управление через USB-порт. На базе контроллера реализована 4-ступенчатая зарядка Boost, ABS, Equalization, Float благодаря использованию промышленного микропроцессора STM 8. Имеется опция таймера и запоминания ранее настроенных параметров. Встроена защита от перегрева, обратного тока, короткого замыкания, разрядки и перегрузки. На устройство предоставляется гарантия производителя 12 месяцев.

Вам нужно войти, чтобы оставить комментарий.

Схема контроллера литий-ионного аккумулятора

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.

Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки (“банки”) на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути “мозг” контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 – ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 – это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection VoltageVOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release VoltageVOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection VoltageVODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Читать еще:  Руководства по эксплуатации volkswagen multivan

Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release VoltageVODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за “смерть” аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер – G2NK (серия S-8261), сборка полевых транзисторов – KC3J1.

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к “внешнему миру”, то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить “банку” аккумулятора, чтобы контроллер опять включил транзистор разряда – FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда – Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время – несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться “восстановительная” зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

Контроллер заряда аккумулятора от солнечной батареи: зачем нужен и как работает

Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей.

Необходимость

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Как работает контроллер зарядки аккумулятора

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

On/Off

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.

Видео

Как правильно подключить контроллер, вы узнаете из нашего видео.

Ссылка на основную публикацию
Adblock
detector