Системы впрыска дизельных двигателей: виды и особенности

Системы впрыска дизельных двигателей: виды и особенности

KadetVital32 › Блог › ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ — ПРИНЦИП РАБОТЫ.

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения топливо-воздушной смеси. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте. В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.
Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.
КОНСТРУКЦИЯ.

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.
Поршни и свечи дизеля
Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

ТИПЫ КАМЕР СГОРАНИЯ.

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.
Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.
Камеры сгорания дизелей
При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.
Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.
Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.
Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.
Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания дизеля.

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.
Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название — рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.
Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.
Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима. Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.
Кардинально изменить ситуацию могла только оптимизация процесса горения топливо — воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом. В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.
Насос-форсунка
В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.
Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок. Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Читать еще:  Nissan x-trail еле едет. в чем дело? причины, советы, фото и видео

Система Common Rail.

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска. Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам. Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок — высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля. Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором. На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха — интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя — в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности. В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.
Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Обзор систем впрыска дизельных двигателей

Можно долго и нудно объяснять принцип действия различных систем впрыска применяемых в моторостроении, принцип работы самого двигателя и системы его управления. Из той информации – реально для владельца важна лишь 1/10 часть: количество потребляемого топлива на 100 км пути, вид установленной на моторе системы впрыска топлива, мощность мотора, «живучесть» системы и, если всё же потребуется, стоимость ремонта/новой детали.

На сегодняшний день в моторостроении применяется несколько систем впрыска топлива от 5 основных производителей, представленных в нашей стране. Это компании BOSCH, ZEXEL(Diesel-Kiki), DENSO(NIPPON-DENSO), DELPHI(Lucas), Continental/VDO(Siemens).

Львиную долю рынка занимает концерн BOSCH (Германия) – «пионеры» в серийном производстве топливной аппаратуры (с 1925 г.)

1927 г. Топливный насос для легкового автомобиля Stoewer. При объеме 2.6 литра этот мотор развивал 27 л.с. примерно 20 кВт.

Данная конструкция ТНВД (PE –type) дожила до наших дней, претерпев множество изменений.

Топливный насос для автомобиля MAN TG-A. Мощность 460 л.с. (345 кВт). На данный момент является конечным этапом развития ТНВД с рядной компоновкой. В отличие от предыдущих поколений механизм опережения встроен в корпус. Имеет электромеханическое управление количеством впрыска и углом начала впрыска.

Но в связи с невозможностью обеспечить всё более ужесточающиеся экологические требования, дальнейшая модернизация не проводится. Концерн разработал за прошедший век топливные насосы различных конструкций.

Примерно в те же годы развивается и основной конкурент BOSCH – LUCAS CAV (Великобритания). Создаются и разрабатываются конструкции, принципиально отличающиеся, но выполняющие функции такие же как и немецкие аналоги. Для грузовиков создается ТНВД со съемной головкой высокого давления (аналогичная схема использована в ТНВД Алтайского Завода Прецизионных Изделий и TGL(ГДР) – для IFA). Позднее для тяжелых двигателей была разработана собственная система насос-форсунок и индивидуальных насосов с электроуправляемыми клапанами, построенная по собственной технологии (несмотря на схожесть с немецкими аналогами). Для быстроходных двигателей создается семейство распределительных насосов DPA(лицензионным производством которых занялся венгерский завод «MEFIN»). На смену DPA пришел DPC, а позднее DP 200(210), EPIC (ТНВД с управлением электроклапанами, в России наиболее часто встречается на автомобилях FORD Transit и Mercedes-Benz). Схема оказалась настолько «живучей», что была применена при разработке ТНВД для Common Rail, по такому же принципу создан насос VP44 (BOSCH). В начале 2000 года фирма LUCAS CAV была приобретена американским концерном DELPHI. Продукция концерна поставляется многим автопроизводителям.

Бренд ZEXEL появился в 1939 году, когда японская фирма DIESEL KIKI купила лицензию у BOSCH на производство дизельных топливных насосов высокого давления, и с помощью немецких специалистов организовала их выпуск. В 1990-м году, компания производящая продукцию под маркой Zexel, стала называться Zexel Corporation. В 2000-м году была реорганизована под названием Bosch Automotive Systems Corporation (RBAJ), то есть стала японским отделением корпорации BOSCH. Топливная аппаратура данного производителя хотя и повторяет модельный ряд BOCSH, но имеет ряд конструктивных особенностей. Таких, как система электромеханических регуляторов.

Свою историю компания DENSO начала в 1949 году под названием Nippon Denso. В 1996 она была преобразована в корпорацию DENSO, так как предыдущее название переводилось с японского языка, как “Японские электронные запчасти”, что не соответствовало достигнутому уровню развития компании, которая расширила рынок продаж своих комплектующих, кроме Японии, на рынки Европы, Америки и Азии. Долгое время компания производила распределительные насосы по лицензии BOSCH. Но DENSO в 1995 году впервые в мире применила систему Common Rail на серийном автомобиле Toyota – Hino, после чего данная система получила признание во всем мире. По похожей схеме разработана система BOSCH CP2.

Компания SIEMENS AG/VDO представлена на российском рынке в основном системами Common Rail. Принципиальным отличием от остальных производителей является использование управляющего элемента из пьезокристаллического пакета. Это повышает скорость срабатывания управляющего элемента в несколько раз, в сравнении с индуктивными элементами.

Ещё одна компания, активно присутствующая на российском рынке – MOTORPAL(Чехия). Данная фирма выпускает рядные ТНВД для спецтехники и сельхозтехники, а так же Газель (механические насос-форсунки) и УАЗ Hunter(рядный ТНВД). Компания активно проводит разработки альтернативы системе Common Rail (TIER 3).

Ну, вот с производителями ТНВД мы определились, теперь попробуем определиться «что за зверь такой создает давление?».

Рядные ТНВД (PE – type) классификация Bosch

Из названия класса – расположение насосных секций в ряд, по одной на каждый цилиндр. Имеет собственный корпус, кулачковый вал, систему изменения цикловой подачи в зависимости от изменения режима нагрузки на двигатель (центробежный и/или всережимный регулятор), автомат опережения впрыска, топливоподающий насос. В более поздних версиях механические регуляторы уступили место электромеханическим (RE – type).

Распределительные ТНВД (VE – type)

Класс ТНВД применяемый в основном на легковых автомобилях и легком коммерческом транспорте. Имеют один плунжер, могут поддерживать работу от 2 до 6 цилиндров. Плунжер, двигаясь аксиально – создает давление, одновременно вращаясь – распределяет топливо под высоким давлением по цилиндрам. В корпусе конструктивно объединены несколько систем: Приводной вал, топливоподающий насос, центробежный и всережимный регуляторы, автомат опережения впрыска, механизм коррекции цикловой подачи по давлению наддува или в зависимости от положения над уровнем моря, автомат облегчения старта. Несмотря на весьма обширный список устройств, все они расположены в одном корпусе, довольно малого размера и веса. С 1986 года применяются как механические регуляторы, так и электромеханические.

Распределительные ТНВД DP(A/C) –type(VP44/VRZ)

Данный тип был разработан фирмой Lucas CAV. Принципиальным отличием от Bosch VE является использование 2, 3 или 4 радиально движущихся навстречу друг другу плунжеров. Ротор, в котором находятся плунжера, вращаясь, распределяет топливо по цилиндрам. Остальные функциональные возможности и принципы действия систем похожи на описанные выше насосы VE. С разработкой и внедрением быстродействующих клапанов, появились насосы серий EPIC(Lucas), VP44(Bosch), VRZ(ZEXEL), V4(DENSO). Для корректировки погрешностей механической обработки применяется метод программного корректирования.

Читать еще:  Причины большого расхода топлива на автомобиле

Насос-форсунки (PDE/UIS)

Данная система объединяет в одном корпусе насосную секцию и форсунку. Привод насосной секции осуществляется от распределительного вала двигателя. Регулировка подачи топлива осуществляется как с помощью зубчатой рейки (регулятор установлен на двигателе), так и с помощью электромагнитного клапана. В насос-форсунках американских двигателей применены гидравлические привода. Система находит применение не только на грузовых автомобилях, но и на легковых (Land Rover, VW) Система выпускается четырьмя производителями – Bosch, Delphi, Continental/VDO, Motorpal.

Индивидуальные насосы (PLD/UPS)

Насосная секция в данной системе, как и в предыдущей, приводится в действие от распределительного вала двигателя (при установке непосредственно в ГБЦ), так и от отдельного кулачкового вала (при установке в отдельный корпус). Для впрыска топлива в цилиндры применяется обычная форсунка. Различие с традиционными системами впрыска состоит в том, что применяется короткая трубка высокого давления с минимальными изгибами, в свою очередь это позволяет добиться более стабильных результатов. Для регулирования количества подачи применяется как зубчатая рейка, так и электроклапан. Наиболее широко эта система применяется на строительной технике и грузовых автомобилях. Таких как DAF XF95, MERSEDES Atego/Actros, RENAULT Magnum.

Common Rail (общая дорога (англ.)). Аккумуляторная система впрыска

На данный момент система является вершиной эволюции ТПА. За счет увеличения давления впрыска (до 2000 бар.) удалось добиться снижения расхода топлива, снижения токсичности выхлопа (за счет выполнения до 9 впрысков за один рабочий такт в цилиндре). Топливные насосы производства BOSCH, DENSO и SIEMENS построены по схожим схемам. DELPHI использует собственную схему, пришедшую от серии DPA/DPC. Впрыск топлива в цилиндры осуществляется через электроуправляемые форсунки SIEMENS и BOSCH используют в своих инжекторах пьезокерамические пакеты, в качестве управляющих элементов. Система применяется практически всеми производителями дизельных моторов, как легковых, так и грузовых автомобилей.

Системы впрыска топлива в двигатель

В современных автомобилях в бензиновых силовых установках принцип работы системы питания схож с тем, который применяется на дизелях. В этих моторах она разделена на две – впуска и впрыска. Первая обеспечивает подачу воздуха, а вторая – топлива. Но из-за конструктивных и эксплуатационных особенностей функционирование впрыска существенно отличается от применяемого на дизелях.

Отметим, что разница в системах впрыска дизельных и бензиновых моторов все больше стирается. Для получения лучших качеств конструкторы заимствуют конструктивные решения и применяют их на разных видах систем питания.

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная. Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Бак.
  2. Насос (электрический).
  3. Фильтрующий элемент (тонкой очистки).
  4. Топливопроводы.
  5. Рампа.
  6. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Системы питания дизельных двигателей

И дизельные системы модернизируются. Если раннее она была механической, то сейчас и дизеля оснащаются электронным управлением. В ней используются те же датчики и блок управления, что и в бензиновом моторе.

Сейчас на автомобилях применяется три типа дизельных впрысков:

  1. С распределительным ТНВД.
  2. Common Rail.
  3. Насос-форсунки.

Как и в бензиновых моторах, конструкция дизельного впрыска состоит из исполнительной и управляющей частей.

Многие элементы исполнительной части те же, что и у инжекторов – бак, топливопроводы, фильтрующие элементы. Но есть и узлы, которые не встречаются на бензиновых моторах – топливоподкачивающий насос, ТНВД, магистрали для транспортировки топлива под высоким давлением.

В механических системах дизелей применялись рядные ТНВД, у которых давление топлива для каждой форсунки создавала своя отдельная плунжерная пара. Такие насосы отличались высокой надежностью, но были громоздкими. Момент впрыска и количество впрыскиваемого дизтоплива регулировалось насосом.

В двигателях, оснащаемых распределительным ТНВД, в конструкции насоса используется только одна плунжерная пара, которая качает топливо для форсунок. Этот узел отличается компактными размерами, но ресурс его ниже, чем рядных. Применяется такая система только на легковом автотранспорте.

Common Rail считается одной из самых эффективных дизельных систем впрыска двигателя. Общая концепция ее во многом позаимствована у инжектора с раздельной подачей.

В таком дизеле моментом начала подачи и количеством топлива «заведует» электронная составляющая. Задача насоса высокого давления — только нагнетание дизтоплива и создание высокого давления. Причем дизтопливо подается не сразу на форсунки, а в рампу, соединяющую форсунки.

Насос-форсунки – еще один тип дизельного впрыска. В этой конструкции ТНВД отсутствует, а плунжерные пары, создающие давление дизтоплива, входят в устройство форсунок. Такое конструктивное решение позволяет создавать самые высокие значения давления топлива среди существующих разновидностей впрыска на дизельных агрегатах.

Напоследок отметим, что здесь приводится информация по видам впрыска двигателей обобщенно. Чтобы разобраться с конструкцией и особенностями указанных типов, их рассматривают по отдельности.

Видео: Управление системой впрыска топлива

Принцип работы и устройство дизельного двигателя

Конструктивные особенности и эксплуатационные характеристики предопределили страсть или отторжение автомобилистов по отношению к агрегатам на “тяжелом топливе”. Так как же работает дизельный двигатель, каково его устройство, принцип работы и преимущества?

Времена, когда автомобиль с дизельными моторами ассоциировались с чадящими и тихоходными, давно остались за поворотом. Каждый автомобилист знает, что транспортное средство с агрегатом на “тяжелом топливе” издает характерные тарахтящие звуки, его выхлоп странно пахнет. Современные моторы награждают своих владельцев умеренным расходом топлива, впечатляющей эластичностью (крутящим моментом, доступным в относительно широком диапазоне оборотов) и иногда ошеломительной динамикой на зависть некоторым бензиновым автомобилям. Но при этом они требовательны к качеству солярки, а ремонт компонентов топливной системы может быть весьма дорогим.

Особенности конструкции

Дизельные двигатели, разумеется, не имеют таких колоссальных отличий как роторно-поршневой двигатель Ванкеля, устройство которого абсолютно не похоже на “анатомию” традиционного ДВС, но у него имеется ряд особенностей, которые проводят между ним и бензиновыми моторами черту.

У дизеля также есть кривошипно-шатунный механизм, но его степень сжатия существенно выше – 19-24 единицы против 9-11 единиц соответственно. Принципиальное отличие дизельного двигателя от бензинового заключается в том, как формируется, воспламеняется и сгорает топливно-воздушная смесь.

У дизельного ДВС отсутствуют свечи зажигания и, соответственно, воспламенение топливно-воздушной смеси происходит от сжатия. При этом, воздух и солярка подаются раздельно. Также следует отметить, что практически ни один современный дизель не обходится без системы наддува, которая используется для повышения рабочих характеристик агрегата. Для оптимизации наддува в максимально широком диапазоне оборотов используются турбонагнетатели с изменяемой геометрией. Дизельный агрегат имеет более высокий коэффициент полезного действия, но он тяжелее и выдает больший крутящий момент при низких оборотах, нежели бензиновый ДВС.

Читать еще:  Ремонт трубок кондиционеров автомобилей высокого давления: неполадки и сварка шлангов

Принцип работы дизельного двигателя

Как работает дизельный двигатель и, самое главное, как происходит воспламенение топлива в камере сгорания, если у агрегата данного типа нет свечей зажигания? Сперва воздух поступает в цилиндры. В конце такта сжатия, когда поршень почти достиг верхней мертвой точки, температура воздуха в камере сгорания достигает высоких значений (порядка 700-800 градусов) и затем в цилиндры впрыскивается дизельное топливо, которое воспламеняется самостоятельно, без искрового зажигания. Тем не менее, свечи в дизельном агрегате все-таки есть, но то – свечи накаливания, а не зажигания, которые нагревают камеру сгорания для облегчения запуска двигателя в холодное время.

Работа свечи накаливания в дизельном двигателе

Они представляет собой спираль (бывают с металлической и керамические), могут быть установлены в вихревой камере или в форкамере (если речь идет об агрегатах с раздельной камерой сгорания) или непосредственно в камере сгорания (если она нераздельная). При включении зажигания свечи накаливания практически мгновенно, за считанные секунды они раскаляются до температур в районе тысячи градусов и нагревают воздух в камере сгорания, облегчая процесс самовоспламенения топливно-воздушной смеси.

Типы дизельных двигателей

Широко распространены моторы с раздельной камерой сгорания – топливо впрыскивается в специальную камеру в головке блока над цилиндром и соединенную с ним каналом, а процесс горения происходит не совсем так как у бензиновых ДВС. В этой вихревой камере поток воздуха интенсивнее закручивается, что способствует более эффективному смесеобразованию и самовоспламенению, которое продолжается в основной камере сгорания. Кстати, дизельные моторы с раздельной камерой сгорания менее шумные из-за того, что применение вихревой камеры снижает интенсивность нарастания давления при самовоспламенении.

У дизелей с неразделенной камерой сгорания процесс самовоспламенения происходит непосредственно в надпоршневом пространстве. Агрегаты данного типа несколько шумнее.

Что такое Common Rail

Common Rail – современная система впрыска топлива, разработанная компанией Bosch и использующая принцип подачи солярки к форсункам от топливной рампы, являющейся аккумулятором высокого давления. Common Rail позволяет сделать агрегат тише, при этом более экономичным и экологичным. Еще одним преимуществом использования общей топливной рампы являются широкие возможности регулировки давления топлива и момента его впрыска, поскольку эти процессы разделены.

VI Международная студенческая научная конференция Студенческий научный форум – 2014

РАЗНОВИДНОСТИ ТОПЛИВНЫХ СИСТЕМ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

Топливная система дизельного двигателя влияет на все основные характеристики двигателя. От качества впрыска топлива в двигатель зависят мощность, экономичность, экологичность, ресурс двигателя и др. В связи с большим влиянием топливной системы на характеристики двигателя, топливная аппаратура двигателя постоянно модернизируется и имеет различные варианты конструкций.

Дизельный двигатель был изобретен Рудольфом Дизелем. Первый функционирующий образец был собран в 1897 году. Изначально работа дизельного двигателя основывалась на применении сжатого воздуха. Такой агрегат был довольно громоздкий и не удобный в использовании. Однако благодаря своим качествам он нашел применение на электростанциях, в кораблестроении и на силовых установках.

Первые координальные изменения дизельного двигателя произошли в 20-х годах 20 века. Немецкий инженер Роберт Бош усовершенствовал работу топливного насоса, а позже разработал и свой двигатель с воспламенением от сжатия. Давление впрыска было небольшим (около 0,2МПа), но его хватало для того, чтобы в подаваемом топливе не было пузырьков воздуха.

Изобретение топливного насоса высокого давления (ТНВД) позволило охарактеризовать дизельные двигатели по двум типам:

Первый – агрегат, использующий насосную систему. Принцип действия заключается в том, что каждая секция насоса связана с отдельной форсункой.

Второй тип использует аккумуляторную систему. При этом работа насоса и форсунок не как не связана. Насос подает топливо в аккумулятор, а затем под давлением топливо подается к форсункам.

Главными требованиями, предъявляемыми к системе подачи топлива дизеля, являются:

1) создание как можно более высоких давлений впрыска, что способствует более мелкому распылу топлива, а значит, уменьшает время испарения и перемешивания топлива с воздухом;

2) обеспечение строго ступенчатой характеристики подачи, что исключает подтекание топлива в распылителе, а значит, препятствует его закоксовыванию и дымлению мотора;

3) возможность многоступенчатого впрыска для минимизации периода индукции воспламенения и осуществления управляемого горения, следствием чего являются меньшие шумность, токсичность и динамические нагрузи;

4) строго идентичное дозирование топлива по цилиндрам для минимизации динамических нагрузок, а значит, для уменьшения материалоёмкости и увеличения ресурса двигателя.

Важным моментом является обеспечение указанных требований на всех режимах работы – от минимального скоростного до номинального.

Специалисты различают несколько принципиальных схем систем подачи топлива дизелей:

1) разделенного типа, когда ТНВД и форсунки связаны довольно длинными трубопроводами высокого давления;

2) с насос-форсунками, когда вышеуказанные трубопроводы отсутствуют;

3) аккумуляторного типа.

Каждая из схем имеет как достоинства, так и недостатки. Например, первая наиболее проста, технологична, а значит, при прочих равных условиях имеет меньшую стоимость, поэтому наиболее широко применяется в отечественной технике. В зависимости от конструкции имеются следующие виды топливных насосов высокого давления: рядный, распределительный.

Рядный ТНВД имеет плунжерные пары по числу цилиндров. Плунжерные пары установлены в корпусе насоса, в котором выполнены каналы для подвода и отвода топлива. Движение плунжера осуществляется от кулачкового вала, который, в свою очередь, имеет привод от коленчатого вала двигателя. Плунжеры постоянно прижимаются к кулачкам с помощью пружин.

Распределительные топливные насосы высокого давления, в отличие от рядного ТНВД, имеют один или два плунжера, обслуживающих все цилиндры двигателя. Распределительные насосы обладают меньшей массой и габаритными размерами, а также обеспечивают большую равномерность подачи. С другой стороны, их отличает сравнительно низкая долговечность сопряженных деталей. Все это определяет область применения данных насосов, в основном, на двигателях легковых автомобилей.

Конструкции распределительных ТНВД могут иметь различный привод плунжера: торцевой кулачковый привод, внутренний кулачковый привод, внешний кулачковый привод. Предпочтительными в плане эксплуатации являются первые два типа привода плунжеров, так как в них отсутствуют силовые нагрузки от давления топлива на узлы приводного вала и, соответственно, выше долговечность.

Во втором случае создания высокого давления и впрыска топлива объединены в одном устройстве — насос-форсунке. Применение этого способа позволяет повысить мощность двигателя, снизить расход топлива, выбросы токсичных веществ, а также уровень шума. Система с насос-форсунками позволяет развивать наибольшие давления впрыска (pв > 200 МПа), но и с её помощью затруднительно получить строго одинаковые цикловые подачи по цилиндрам, и, кроме того, она дороже секционного ТНВД.

Аккумуляторная система Common rail имеет электронный блок управления, обеспечивая разнообразные характеристики. В этой системе ТНВД существенно проще по конструкции в сравнении с системой первого типа, т. к. является только источником давления и не регулирует цикловую подачу топлива. Однако конструктивна и технологическая сложности форсунок очень высоки, что обусловливает высокую стоимость и сравнительно низкий ресурс. К тому же КПД этой системы существенно ниже первых двух, что связано с необходимостью поддержания постоянного высокого давления в гидроаккумуляторе и высокой энергии электрического импульса управления каждой форсункой (напряжение Uи > 70 В; сила тока Iи > 20 А).

В системе Common Rail реализуется многократный впрыск топлива в течение одного цикла работы двигателя. При этом различают предварительный, основной и дополнительный впрыск.

Высокое давление, под которым топливо подается в цилиндр, создается уже при самом малом числе оборотов коленвала. Благодаря ему, а также электронному управлению процессом впрыска достигается значительно лучшая подготовка смеси в цилиндрах, что приводит к уменьшению расхода топлива и снижению токсичности выхлопных газов.

В Common Rail электроника регулирует момент впрыска, количество впрыскиваемого топлива и алгоритм его подачи. Именно этим и достигается оптимальный на каждом конкретном режиме работы дизеля результат.

Развитие системы впрыска Common Rail идет по пути увеличения давления впрыска: первое поколение — 140 МПа, с 1999 г.; второе поколение — 160 МПа, с 2001 г.; третье поколение — 180 МПа, с 2005 г.; четвертое поколение — 220 МПа, с 2009 г.

Еще одной системой подачи топлива дизеля является HEUI, название которой происходит от Hydraulically actuated Electroniсally controlled Unit Ingection, что можно перевести как «Устройство впрыска с гидроприводом и электронным управлением». Эта система представляет собой усовершенствованные насос-форсунки, которые управляются с помощью гидравлического привода, заменившего кулачковый вал. Основным рабочим телом в данном случае является масло, которое по специальному трубопроводу из системы смазки двигателя подается к насос-форсункам. Последние создают давление впрыска топлива, превышающее 210 МПа. Столь мощная энергетика позволяет добиться лучшего распыления топлива и его оптимального смешивания с воздухом, находящимся под давлением. Caterpillar выпускает систему с 1992 года. В качестве стандартного оборудования ее ставят на самый совершенный и наиболее технически насыщенный двигатель компании – 3126В. Также она устанавливается на дизелях автомобилей Isuzu, а также Ford (с двигателями Navistar International).

В сравнении с Common Rail система HEUI выглядит более сложной. Действительно, она имеет не одну, а целых две «общих магистрали» – масляную и топливную, связанные между собой насос-форсунками с гидроприводом. Для сравнительно небольших дизелей легковых автомобилей такая система выглядит громоздкой. Однако не будем забывать, что на более тяжелых моторах подвижные части форсунок крупнее, а потому добиться хорошего быстродействия электромагнитной форсунки для Common Rail очень сложно.

Усовершенствование топливной системы направлено на повышение эксплуатационных характеристик в целом. В тоже время следует отметить, что усложнение конструкции, введение электроники и гидравлики требует дополнительных рекомендаций по обеспечению работоспособности двигателя. В то же время увеличивается значимость, т.е. влияние топливной системы на двигатель в целом, что позволяет сделать вывод о недостаточности знаний о конструктивном и эксплуатационном совершенстве рассмотренных выше топливных систем ДВС.

Следует уделить больше внимания механизму сервисного сопровождения топливной системы, чего в настоящее время многие производители не делают.

Кузнецов Е.В. Топливный насос высокого давления дизеля / Е. В. Кузнецов // Вестник Белорусско-Российского университета. -2011. -№3 -С. 58-63

Ссылка на основную публикацию
Adblock
detector