Световые и звуковые приборы своими руками

Световые и звуковые приборы своими руками

Динамика света и управление

Для получения динамики в световом оформлении помимо источника питания необходим управляющий сигнал, под воздействием которого будет происходить изменение световой картины.

Существует два основных способа управления динамикой света: независимое и зависимое управление от звукового сигнала. Управление динамикой света можно осуществить с помощью следующих устройств:

  1. Цветомузыкальные устройства (цветомузыка)
  2. Приборы с функцией звуковой активации
  3. Музыкально-управляемые автоматы световых эффектов

Цветомузыкальные устройства (цветомузыка). Управление от звукового сигнала в них осуществляется следующим образом. С помощью электрических фильтров общий звуковой сигнал разделяется на несколько частотных диапазонов, уровень сигнала в каждом из которых в конечном счете управляет яркостью свечения соответствующих этим каналам источников света – ламп или светодиодов. Чем выше уровень сигнала в канале, тем ярче горят источники света, соответствующие этому каналу. Таким образом, световые картины изменяются в зависимости от характера музыкальных композиций. С помощью цветомузыки можно реализовать один из самых впечатляющих эффектов – синхронизация по ритму, если один канал цветомузыки настроить на частоту звучания бас-бочки, а вторую — на ведущий.

Приборы с функцией звуковой активации. Функцию звуковой активации могут иметь как сами световые приборы (дискотечные приборы эффектов, проекторы, лазеры и др.), так и пульты управления световым оборудованием и приборами. Первое подразумевается чаще. Работа световых приборов в режиме звуковой активации заключается в том, что из поступающего звука с помощью фильтра производится выделение сигнала управления, который затем управляет режимом работы прибора. Реализаций схем управления может быть много, например, из низкочастотного спектра (например, от бас-бочки) формируются импульсы. Эти импульсы поступают на счетчик. После поступления n-го импульса счетчик формирует управляющий сигнал, который изменяет режим работы светового прибора – происходит изменение движения луча, изменяется программа работы, изменяется направления вращения прибора и др. То есть, звуковой сигнал управляет режимом работы светового прибора. Поэтому цветомузыка и прибор с функцией звуковой активации это принципиально разные устройства, с принципиально разным управлением динамикой света и принципиально разным световым эффектом. В цветомузыке световые картины зависят от характера музыки (темп, спектр частот сигнала, динамика композиции), в то время как работа многих световых приборов от звуковой активации будет выглядеть как беспорядочное включение и движение лучей, никак не синхронизированных с музыкой.

Музыкально-управляемые автоматы световых эффектов. Идея работы данного типа приборов аналогична тому, как это реализовано в приборах с функцией звуковой активации – из звукового сигнала выделяются импульсы, которые управляют режимом работы автомата световых эффектов или скоростью эффекта. Последнее как раз и позволяет получить синхронизацию между ритмом музыкальной композиции и скоростью работы эффекта. Достоинства данного типа приборов – невысокая стоимость стоимость и простота в обслуживании. Если в таком приборе хорошо отстроена синхронизация по ритму, то можно получить весьма динамичный эффект, когда группы ламп переключаются точно в доли ритма. В конце прошлого века подобное управление являлось основой для светового оформления выступлений многих известных музыкальных групп.

Устройства с независимым управлением от звукового сигнала. Это могут быть всё те же автоматы световых эффектов, в которых управление производится не от звукового сигнала, а от задающего генератора. Другим примером подобного рода устройств являются проекторы световых эффектов, например, пламени, воды, звездного неба, большая часть моторизированных приборов – шары, полусферы, грибы и др. Вращающийся зеркальный шар и стробоскоп – это также устройства с независимым от звукового сигнала управлением.

Характер управления будет зависеть не только от того, какой вариант Вы выберите, но и от того, какой эффект Вы хотите получить. Преимущество цветомузыки перед всеми остальными устройствами заключается в возможности автономного управления от музыки, при котором нет необходимости постоянно ей управлять. А вот корректировать цветомузыку придется, поскольку, если частоты ритм-секции композиций отличаются друг от друга. Если автомат световых эффектов с независимым управлением от звука используется для получения динамичного света, то он потребует управления со стороны человека, поскольку для быстрых музыкальных композиций нужно увеличивать скорость эффекта, а для медленных – уменьшить. Если же автомат световых эффектов используется в качестве декоративного эффекта, то данную коррекцию можно не проводить – автомат будет циклически воспроизводить запрограммированный набор эффектов. Если же требуется синхронизировать музыкальный материал с работой световых приборов, то потребуется либо оперативное управление ими, либо предварительное программирование. В противном случае работа световых приборов, как Вы увидите дальше, будет весьма отдаленно соответствовать музыкальным композициям.

Подключение световых приборов для «Чайников»

Скачать эту статью в PDF
dmx-manual.pdf

Нам часто задают вопросы относительно монтажа и подключения световых приборов, управляемых по протоколу DMX 512. Как правильно все смонтировать и подключить, чтобы все работало, а так же, как в дальнейшем работать с данным оборудованием. Эта статья ставит целью рассказать простым языком, что же такое DMX управление вообще и как быстро научиться монтировать, настраивать, а в последствии и управлять световым оборудованием.

Что нужно знать в первую очередь о протоколе DMX 512? Нужно знать, что есть такой протокол управления как вид и что приборы, которые Вы планируете покупать и эксплуатировать, его поддерживают. ВСЕ!

Если у читателя есть желание прочитать более подробно о тонкостях данного вида передачи данных, то это возможно сделать, прочитав ВОТ ЭТУ статью .

И так, у нас есть некоторое количество световых приборов, которые имеют возможность управления по DMX, а так же световой пульт, который и будет управлять всей этой световой красотой. Как же настроить эту, на первый взгляд очень сложную систему?

На самом деле, все намного проще, чем кажется на первый взгляд. Мы имеем световой пульт DMX, к которому необходимо подключить все приборы. Работает это так: К пульту подключается кабель управления, а другим концом этот кабель подключается к ближайшему прибору. На каждом приборе, поддерживающим управление DMX 512, имеются два разъема (3 или 5 штырьковых) с обозначениями «DMX IN» и «DMX OUT». Соответственно это «ВХОД» и «ВЫХОД» для управляющего кабеля. Кабель от пульта ДМХ подключается к «ВХОДУ» первого прибора, а дальше, подключение идет последовательно от прибора к прибору по принципу вход – выход.

В конце всей линии, на выходе последнего прибора, в некоторых случаях устанавливают так называемый «ТЕРМИНАТОР»

Читать еще:  Проверить масло в вариаторе ниссан х трейл

Терминатором называется нагрузочный резистор, который располагается между двумя проводами с данными (штырьки 2 и 3 разъема типа XLR) на конце кабеля максимально удаленного от передающего устройства.

В качестве терминатора обычно используется резистор с характеристиками 90-120 Ом мощностью 1/4 Ватта. Если строго придерживаться стандарта EIA485, то следует монтировать резисторы-терминаторы с параметром 120 Ом на обоих концах линии.

В принципе, если оборудование устанавливается в небольшом помещении и длинна всей линии ДМХ не превышает 50м, установка «ТЕРМИНАТОРА» не является обязательной.

И так, с подключением разобрались, осталось настроить всю систему.

Принцип настройки тоже не должен вызвать затруднений, главное понять общий принцип:

  • Каждый прибор должен иметь свой уникальный адрес.
  • Каждый прибор имеет некоторое количество каналов управления.

Принцип тут вот какой. Подключаем первый прибор. Выставляем ему адрес 001 (это делается на световом приборе в его меню). Далее, смотрим инструкцию к этому прибору, тот ее раздел, где указанно количество каналов управления и то, за что отвечает каждый канал. Допустим, что наш прибор имеет 5 каналов управления. Это означает, что адрес следующего прибора, должен быть 006. То есть формула следующая: Адрес прибора + количество его каналов управления = адрес следующего прибора.

Абсолютно не важно, одинаковые у вас световые приборы или нет, общий принцип подключения остается одинаковый для приборов любого типа, главное, чтобы все они имели возможность управления по протоколу DMX 512!

Пара слов насчет управляющих кабелей

В идеале, вся система должна соединяться специальным кабелем, предназначенным для передачи сигнала ДМХ и имеющим соответствующую маркировку. Нельзя сказать, что кабель DMX сильно дороже, или его сложно купить, но очень часто данный вид кабеля продается в бухтах по 100 метров, а такая длинна не всем и не всегда нужна. С одной стороны это очень удобно, так как можно спаять кабель нужной длины. А с другой стороны, не всем нужны такие длинные провода, да и с паяльным процессом знаком не каждый.

Если у Вас не большое помещение и Ваша линия ДМХ не будет превышать длину в 40 метров, для соединения световых приборов можно воспользоваться готовыми микрофонными кабелями. Купить их гораздо проще, кроме того не придется заморачиваться с процессом пайки разъемов.

Как работать со световым пультом?

Существует множество моделей световых пультов DMX 512. И работа с каждой конкретной моделью, требует определенных знаний последовательности действий непосредственно для данной модели.

В большинстве случаев, для небольших проектов, используются пульты начального уровня. Они могут называться совершенно по разному, быть разных производителей, но принцип работы у них один и тот же.

Внешний вид световых пультов такого типа может слегка различаться, однако схема работы с данным типом световых контроллеров одинаковая.

ЦВЕТОМУЗЫКА НА ARDUINO

22.05.2019 colorMusic_v2.10:
• Исправлен глюк с большим количеством светодиодов на МЕГЕ

СТАРЫЕ ВЕРСИИ

  • Добавлена плавность режиму цветомузыки по частотам! Настройка SMOOTH_STEP
  • Добавлен режим стробоскопа с целой кучей настроек!
  • Добавлено управление с ИК пульта! Купить пульт можно по этой ссылке , цена вопроса 50р
  • 7 режим – Режим подсветки
  • 8 режим – Режим бегущих частот
  • 9 режим – Анализатор спектра (Версия 2.1)
  • У некоторых режимов появились подрежимы
  • Возможна работа БЕЗ потенциометра. Читайте ниже в инструкции по эксплуатации
  • Настройки сохраняются в память (энергонезависимую)
  • Улучшена производительность, почищен мусор
  • в 7 режиме радугу можно остановить и пустить вспять
  • Добавлена настройка RESET_SETTINGS для сброса настроек в случае некорректной работы. Читайте ниже в FAQ

11.05.2018 ночь colorMusic_v2.5:

  • Код оптимизирован, библиотеки FastLED и IRremote заменены на более оптимальные Adafruit_NeoPixel и IRLremote (для работы версии 2.5 и выше необходимо установить новые библиотеки из общей папки с библиотеками!)
  • ИК пульт теперь срабатывает почти в 100% случаев вместо прежних 30%
  • Поддержка максимум 410 светодиодов

11.05.2018 день colorMusic_v2.6:

  • Возвращена библиотека FastLED (как оказалось, функции FastLED работают гораздо быстрее, чем NeoPixel, а также поддерживает такое же количество светодиодов!)
  • ИК пульт всё ещё срабатывает почти в 100%, по сравнению с 30% в версиях 2.0-2.4
  • Поддержка максимум 410 светодиодов (работа может быть нестабильной)
  • Исправлен небольшой баг
  • Добавлено сохранение состояния “включено/выключено” в энергонезависимую память. Штука опциональная, в настройках можно выключить (настройка KEEP_STATE)

28.09.2018 colorMusic_v2.7 (by Евгений Зятьков):

  • Настройка пульта внесена в скетч, тип пульта настраивается в IR_RCT
  • Добавлена поддержка Arduino Mega и Pro Micro
  • Исправлены мелкие баги

22.11.2018 colorMusic_v2.8:

• Добавлено ограничение тока для всей системы, настройка CURRENT_LIMIT
• Слегка оптимизированы настройки

22.05.2019 colorMusic_v2.10:
• Исправлен глюк с большим количеством светодиодов на МЕГЕ

Крутейшая свето- цветомузыка на Arduino и адресной светодиодной ленте WS2812b. Работает с лентой любой длины (до 450 светодиодов (версия 1.1), до 350 светодиодов (версия 2.0)), и может быть размещена в любом месте в квартире или автомобиле.

Режимы работы (переключаются кнопкой или с ИК пульта (версия 2.0)):

  • VU meter (столбик громкости): от зелёного к красному
  • VU meter (столбик громкости): плавно бегущая радуга
  • Светомузыка по частотам: 5 полос симметрично
  • Светомузыка по частотам: 3 полосы
  • Светомузыка по частотам: 1 полоса
  • Стробоскоп (Версия 2.0)
  • Подсветка (Версия 2.0)
    • Постоянный цвет
    • Плавная смена цвета
    • Бегущая радуга
  • Бегущие частоты (Версия 2.0)
  • Анализатор спектра (Версия 2.1)
  • Плавная анимация (можно настроить)
  • Автонастройка по громкости (можно настроить)
  • Фильтр нижнего шума (можно настроить)
  • Автокалибровка шума при запуске (можно настроить)
  • Поддержка стерео и моно звука (можно настроить)
  • Лента не гаснет полностью (Версия 2.0)
  • (Версия 2.1) все настройки сохраняются в памяти и не сбрасываются при перезагрузке
    • Сохранение настроек происходит при выключении кнопкой звёздочка (*)
    • А также через 30 секунд после последнего нажатия на любую кнопку ИК пульта

ПОДРОБНОЕ ВИДЕО ПО ПРОЕКТУ


Понятные схемы, прошивки с комментариями и подробные инструкции это очень большая работа. Буду рад, если вы поддержите такой подход к созданию Ардуино проектов.

ИНСТРУКЦИИ ПО ЭКСПЛУАТАЦИИ

НАСТРОЙКА ОПОРНОГО НАПРЯЖЕНИЯ. Потенциометр настройки опорного напряжения настраивается “методом тыка” пока не заработает (у меня стоит в середине). Подстройка нужна при смене источника аудио или изменении его потенциальной громкости.

  • Если во время работы в режиме VU метра (первые два режима) шкала всё время горит – слишком низкое опорное напряжение, Ардуино получает слишком высокий сигнал
  • Если не горит – опорное слишком высокое, системе не удаётся распознать изменение громкости с достаточной для работы точностью
Читать еще:  Какой расход топлива у маза

МОЖНО СОБРАТЬ СХЕМУ БЕЗ ПОТЕНЦИОМЕТРА! Для этого параметру POTENT (в скетче в блоке настроек в настройках сигнала) присваиваем 0. Будет задействован внутренний опорный источник опорного напряжения 1.1 Вольт. Но он будет работать не с любой громкостью! Для корректной работы системы нужно будет подобрать громкость входящего аудио сигнала так, чтобы всё было красиво, используя предыдущие два пункта по настройке.

НАСТРОЙКА НИЖНЕГО ПОРОГА ШУМОВ является очень важной, в идеале выполняется 1 раз для любого нового источника звука или смены громкости старого. Есть 3 варианта настройки:

  • Ручная: выключаем AUTO_LOW_PASS и EEPROM_LOW_PASS (ставим около них 0), настраиваем значения LOW_PASS и SPEKTR_LOW_PASS вручную, методом тыка
  • Автонастройка при каждом запуске: включаем AUTO_LOW_PASS, выключаем EEPROM_LOW_PASS . При подаче питания музыка должна стоять на паузе! Калибровка происходит буквально за 1 секунду.
  • По кнопке: при удерживании кнопки 1 секунду настраивается нижний порог шума (музыку на паузу!)
  • Из памяти ( ЛУЧШИЙ ВАРИАНТ ): выключаем AUTO_LOW_PASS и включаем EEPROM_LOW_PASS
    • Включаем систему, источник звука подключен проводом
    • Ставим музыку на паузу
    • Удерживаем кнопку 1 секунду (либо кликаем кнопку 0 (ноль) на ИК пульте
    • Загорится светодиод на плате Arduino, погаснет через

    1.5 секунды

  • Значения шумов будут записаны в память и будут САМИ загружаться при последующем запуске!

Простые имитаторы звуков, световые эффекты, игрушки (11 схем)

Схемы простейших электронных устройств для начинающих радиолюбителей. Простые электронные игрушки и устройства которые могут быть полезны для дома. Схемы построены на основе транзисторов и не содержат деффицитных компонентов. Имитаторы голосов птиц, музыкальные инструменты, светомузыка на светодиодах и другие.

Генератор трелей соловья

Генератор трелей соловья, выполненный на асимметричном мультивибраторе, собран по схеме, приведенной на рис. 1. Низкочастотный колебательный контур, образованный телефонным капсюлем и конденсатором СЗ, периодически возбуждается импульсами, вырабатываемыми мультивибратором. В итоге формируются звуковые сигналы, напоминающие соловьиные трели. В отличие от предыдущей схемы звучание этого имитатора не управляемое и, следовательно, более однообраз ное. Тембр звучания можно подбирать, меняя емкость конденса тора СЗ.

Рис. 1. Генератор-иммитатор трелей соловья, схема устройства.

Электронный подражатель пения канарейки

Рис. 2. Схема электронного подражателя пения канарейки.

Электронный подражатель пения канарейки описан в книге Б.С. Иванова (рис. 2). В его основе также асимметричный мультивибратор. Основное отличие от предыдущей схемы — это RC-цепочка, включенная между базами транзисторов мультивибратора. Однако это несложное нововведение позволяет радикально изменить характер генерируемых звуков.

Имитатор кряканья утки

Имитатор кряканья утки (рис. 3), предложенный Е. Бри-гиневичем, как и другие схемы имитаторов, реализован на асимметричном мультивибраторе [Р 6/88-36]. В одно плечо мультивибратора включен телефонный капсюль BF1, а в другое — последовательно соединенные светодиоды HL1 и HL2.

Обе нагрузки работают поочередно: то издается звук, то вспыхивают светодиоды — глаза «утки». Тональность звука подбирается резистором R1. Выключатель устройства желательно выполнить на основе магнитоуправляемого контакта, можно самодельного.

Тогда игрушка будет включаться при поднесении к ней замаскированного магнита.

Рис. 3. Схема имитатора кряканья утки.

Генератор «шума дождя»

Рис. 4. Принципиальная схема генератора «шума дождя» на транзисторах.

Генератор «шума дождя», описанный в монографии В.В. Мацкевича (рис. 4), вырабатывает звуковые импульсы, поочередно воспроизводимые в каждом из телефонных капсюлей. Эти щелчки отдаленно напоминают падение капель дождя на подоконник.

Для того чтобы придать случайность характеру падения капель, схему (рис. 4) можно усовершенствовать, введя, например, последовательно с одним из резисторов канал полевого транзистора. Затвор полевого транзистора будет представлять собой антенну, а сам транзистор будет являться управляемым переменным резистором, сопротивление которого будет зависеть от напряженности электрического поля вблизи антенны.

Электронный барабан-приставка

Электронный барабан — схема, генерирующая звуковой сигнал соответствующего звучания при прикосновении к сенсорному контакту (рис. 5) [МК 4/82-7]. Рабочая частота генерации находится в пределах 50. 400 Гц и определяется параметрами RC-элементов устройства. Подобные генераторы могут быть использованы для создания простейшего электромузыкального инструмента с сенсорным управлением.

Рис. 5. Принципиальная схема электронного барабана.

Электронная скрипка с сенсорным управлением

Рис. 6. Схема электронной скрипки на транзисторах.

Электронная «скрипка» сенсорного типа представлена схемой, приведенной в книге Б.С. Иванова (рис. 6). Если к сенсорным контактам «скрипки» приложить палец, включается генератор импульсов, выполненный на транзисторах VT1 и VT2. В телефонном капсюле раздастся звук, высота которого определяется величиной электрического сопротивления участка пальца, приложенного к сенсорным пластинкам.

Если сильнее прижать палец, его сопротивление понизится, соответственно возрастет высота звукового тона. Сопротивление пальца зависит также от его влажности. Изменяя степень прижатия пальца к контактам, можно исполнять незамысловатую мелодию. Начальную частоту генератора устанавливают потенциометром R2.

Электромузыкальный инструмент

Рис. 7. Схема простого самодельного электромузыкального инструмента.

Электромузыкальный инструмент на основе мультивибратора [В.В. Мацкевич] вырабатывает электрические импульсы прямоугольной формы, частота которых зависит от величины сопротивления Ra — Rn (рис. 7). При помощи подобного генератора можно синтезировать звуковую гамму в пределах одной-двух октав.

Звучание сигналов прямоугольной формы очень напоминает органную музыку. На основе этого устройства может быть создана музыкальная шкатулка или шарманка. Для этого на диск, вращаемый ручкой или электродвигателем, наносят по окружности контакты различной длины.

К этим контактам напаивают предварительно подобранные резисторы Ra — Rn, которые определяют частоту импульсов. Длина контактной полоски задает длительность звучания той или иной ноты при скольжении общего подвижного контакта.

Простая цветомузыка на светодиодах

Устройство цветомузыкального сопровождения с разноцветными светодиодами, так называемая «мигалка», украсит музыкальное звучание дополнительным эффектом (рис. 8).

Входной сигнал звуковой частоты простейшими частотными фильтрами разделяется на три канала, условно называемые низкочастотным (светодиод красного свечения); среднечастотным (светодиод зеленого. свечения) и высокочастотным (желтый светодиод).

Высокочастотная составляющая выделяется цепочкой С1 и R2. «Среднечастотная» компонента сигнала выделяется LC-фильтром последовательного типа (L1, С2). В качестве катушки индуктивности фильтра можно использовать старую универсальную головку от магнитофона, либо обмотку малогабаритного трансформатора или дросселя.

В любом случае при настройке устройства потребуется индивидуальный подбор емкости конденсаторов С1 — СЗ. Низкочастотная составляющая звукового сигнала беспрепятственно проходит через цепь R4, СЗ на базу транзистора VT3, управляющего свечением «красного» светодиода. Токи «высокой» частоты закорачиваются конденсатором СЗ, т.к. он имеет для них крайне малое сопротивление.

Рис. 8. Простая цветомузыкальная установка на транзисторах и светодиодах.

Электронная игрушка «угадай цвет» на светодиодах

Электронный автомат предназначен для отгадывания цвета включившегося светодиода (рис. 9) [Б.С. Иванов]. Устройство содержит генератор импульсов — мультивибратор на транзисторах VT1 и VT2, связанный с триггером на транзисторах VT3, VT4. Триггер, или устройство с двумя устойчивыми состояниями, поочередно переключается после каждого из пришедших на его вход импульсов.

Соответственно, поочередно высвечиваются и разноцветные светодиоды, включенные в каждое из плеч триггера в качестве нагрузки. Поскольку частота генерации достаточно высока, мигание светодиодов при включении генератора импульсов (нажатии на кнопку SB1) сливается в непрерывное свечение. Если отпустить кнопку SB1, генерация прекращается. Триггер устанавливается в одно из двух возможных устойчивых состояний.

Поскольку частота переключений триггера была достаточно велика, заранее предсказать, в каком состоянии окажется триггер, невозможно. Хотя из каждого правила есть исключения. Играющим предлагается определить (предсказать), какой именно цвет появится после очередного запуска генератора.

Либо предлагается угадать, какой цвет загорится после отпускания кнопки. При большом наборе статистики вероятность равновесного, равновероятного высвечивания светодиодов должна приблизиться к значению 50:50. Для малого числа попыток это соотношение может не выполняться.

Рис. 9. Принципиальная схема электронной игрушки на светодиодах.

Электронная игрушка «у кого лучше реакция»

Электронное устройство, позволяющее сопоставить скорость реакции двух испытуемых [Б.С. Иванов], может быть собрано по схеме, приведенной на рис. 10. Первым высвечивается индикатор — светодиод того, кто первый нажмет «свою» кнопку.

В основе устройства триггер на транзисторах VT1 и VT2. Для повторного тестирования скорости реакции питание устройства следует кратковременно отключить дополнительной кнопкой.

Рис. 10. Принципиальная схема игрушки «у кого лучше реакция».

Самодельный фототир

Рис. 11. Принципиальная схема фототира.

Светотир С. Гордеева (рис. 11) позволяет не только играть, но и тренироваться [Р 6/83-36]. Фотоэлемент (фотосопротивление, фотодиод — R3) направляют на светящуюся точку или солнечный зайчик и нажимают спусковой крючок (SA1). Конденсатор С1 разряжается через фотоэлемент на вход генератора импульсов, работающего в ждущем режиме. В телефонном капсюле раздается звук.

Если наводка неточна, и сопротивление резистора R3 велико, то энергии разряда недостаточно для запуска генератора. Для фокусировки света необходима линза.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Как изготовить светомузыку своими руками по простым схемам

Как сделать цветомузыку и порадовать знакомых? В современной радиотехнике существует огромное разнообразие радиоэлементов и светодиодов. Используя достижения электроники, радиолюбители могут изготовить ЦМУ своими руками. Большой диапазон цветов, яркий и насыщенный свет, высокая скорость срабатывания различных элементов, низкое потребление энергии. Этот список достоинств можно продолжать бесконечно.

Принцип работы цветомузыки

Светодиоды, собранные по схеме, моргают от имеющегося источника звука (это может быть плеер или магнитола и колонки) с определённой частотой. Преимущества использования светодиодов перед используемыми ранее в установках:

  • световая насыщенность света;
  • обширный цветовой диапазон;
  • хорошая скорость;
  • малая энергоёмкость.

Простейшие схемы цветомузыки

Простая светомузыка, которую можно собрать, имеет один светодиод, питается от источника постоянного тока напряжением 6 — 12 В. Можно собрать схему, используя светодиодную ленту и подобрав необходимый транзистор. Недостатком является то, что существует зависимость частоты мигания светодиодов от уровня звука. Иначе сказать, что полноценный эффект можно наблюдать только при одном уровне звучания.

Если снизить громкость, то будет редкое мигание, а при повышении громкости останется постоянное свечение. Убрать этот недостаток можно при помощи трёхканального преобразователя звука.

Работаем по простейшей схеме на транзисторах с использованием фильтров. Для того чтобы её собрать, необходим источник питания на 9 вольт, который позволит светиться светодиодам в каналах. Чтоб собрать три усилительных каскада понадобятся транзисторы КТ315 (аналог КТ3102). В качестве нагрузки используются разноцветные светодиоды. Для усиления использован понижающий трансформатор. Резисторы выполняют функцию регулировки вспышек светодиодов. В схеме стоят фильтры для пропускания частот. Можно улучшить схему и добавить яркость, для этого используются лампочки накаливания на 12 В. Понадобятся тиристоры управления. Всё устройство необходимо запитать от трансформатора. По такой простой схеме с фильтром можно уже работать.

Цветомузыка на тиристорах, может быть собрана даже начинающим радиотехником. Первое, что необходимо сделать — это подобрать электрическую схему. Для подобной установки необходим источник питания на 12 вольт. Она может работать в двух режимах: как светильник и как цветомузыка. Режим выбирается переключателем, установленным на плате.

При изготовлении светомузыки для дома необходимо сделать печатную плату. Для этого нужно взять фольгированный стеклотекстолит размерами 50 х 90 мм и толщиной 0,5 мм. Процесс изготовление платы состоит из нескольких этапов:

  • подготовка фольгированного текстолита;
  • сверление отверстий под детали;
  • нанесение дорожек;
  • травление.

Плата готова, комплектующие закуплены. Теперь начинается самый ответственный момент – распайка радиоэлементов. От того, как аккуратно они будут установлены и запаяны, будет зависеть окончательный результат. Собираем нашу печатную плату с напаянными на ней компонентами в плафон, который имеется дома.

Радиоэлементы для электрической схемы вполне доступны, их приобрести не составит труда в ближайшем магазине электротоваров .

Для цветомузыкального сопровождения подойдут проволочные резисторы мощностью 0,25 – 0,125 Вт. Величину сопротивления всегда можно определить по цветным полоскам на корпусе, зная порядок их нанесения. Подстроечные резисторы бывают как отечественные, так и импортные . Конденсаторы бывают оксидные и электролитические, Некоторые оксидные конденсаторы могут иметь полярность, которую необходимо соблюдать при монтаже. Диодные мосты бывают уже готовые, но если таковых нет, то выпрямительный мост несложно собрать, используя диоды серии КД или 1N4007. Светодиоды берутся обычные с разноцветным свечением. Использование cветодиодных RGB-лент – перспективное направление в радиоэлектронике.

Сборка цветомузыки для автомобиля

Если получилось порадовать цветомузыкой из светодиодной ленты своими руками, то подобную установку со встроенной магнитолой можно собрать для машины. Её легко собрать и быстро настроить. Предлагается разместить приставку в пластиковом корпусе, который можно купить в отделе электрорадиотехники. Установка надёжно защищена от влаги и пыл. Её несложно установить за приборной панелью автомобиля. Отличный световой эффект достигается, если использовать разноцветную (RGB) ленту. Корпус также можно изготовить самостоятельно, используя оргстекло.

Подбираются пластины нужных габаритов, в первой из деталей делаются два отверстия (для питания), зашкуриваются все детали. Собираем всё с помощью термопистолета. Корпус готов.

Цветомузыка своими руками, видео:

Читать еще:  Коробка автомат: обозначения передач и режимов
Ссылка на основную публикацию