Противотуманные лазерные фары для авто: принцип работы и изготовление своими руками

Противотуманные лазерные фары для авто: принцип работы и изготовление своими руками

labavto.com

В настоящее время светодиодная оптика является одним из самых популярных типов фонарей. Светодиодные и качественные фары для машины позволяют улучшить световой поток и являются неотъемлемым элементом в случае проведения тюнинга. В этой статье мы расскажем о том, какими преимуществами обладают эти фары и как их установить диодные лампочки в фонари.

Преимущества светодиодной оптики

Светодиодные лампы в автомобильной оптике

Разумеется, головное освещение в любом транспортном средстве должно быть универсальным — не будет же водитель каждый раз изменять угол наклона лампы при необходимости переключить свет. Если водитель производит тюнинг или просто хочет улучшить освещение дороги своей машины, можно остановить свой выбор на ксеноне. Но ксеноновые лампы стоят на порядок дороже и они никогда не будут иметь такой световой поток, как множество диодных источников света.

Ниже вкратце рассмотрим преимущества, характерные для светодиодных лампочек:

  1. Благодаря применению нескольких десятков источников водитель сможет не только улучшить обзор дорожного полотна, но и обочины. Любая диодная фара, будь то ближнее освещение или противотуманные огни, обладает на 45% большим охватом пространства. Что касается угла охвата, то здесь все зависит исключительно от установленной на автомобиле оптики.
  2. Если настройки правого и левого фонарей будут разными (речь идет об обычных галогеновых лампах или ксеноне), правая фара в любом случае будет хуже освещать пространство. Все потому, что она будет упираться в асфальт для того, чтобы не ослеплять водителей идущих навстречу автомобилей. Что касается диодных лампочек, то у них нет такого недостатка.
  3. Еще одно преимущество диодных лампочек для автомобиля — это избирательность. Каждый отдельный диодный блок позволяет при правильной настройке освещать определенный участок дороги перед транспортным средством. Соответственно, управление фарой, разбитой на несколько секторов, будет более простым. Причем в отличие от ксенона, водителю не придется использовать для этого сервоприводы, стоимость которых и так достаточно высокая, для этого достаточно будет только тока.
  4. Ресурс эксплуатации. Как известно, светодиодные фонари обладают более высоким сроком службы по сравнению с другими световыми источниками. Минимальный ресурс эксплуатации диодных элементов составляет 100 тысяч часов. Следует также отметить, что диодные лампочки не боятся вибрации, а также пробоев в подвеске, что также способствует увеличению ресурса.
  5. Доступность устройств. Диодные лампочки приобретаются в любом магазине по доступной цене. Что касается стоимости управляющих устройств, то здесь все зависит от опыта и знаний автолюбителя, которые будет производить установку диодов автомобиля своими руками.

Обозначение оптики транспортного средства

На сегодняшний день множество мировых производителей занимаются производством диодных лампочек с разным цветом и дальностью освещения. Речь идет как о головном освещении, так и о задней оптике. Это свидетельствует о том, что светодиодная технология уже прошла испытания и сегодня может использоваться для самостоятельного монтажа на машину.

Как работает система управления LED-оптикой

В принципе, в вопросе работы системы управления LED-оптикой нет ничего сложного. Разумеется, если вы решите установить в свой автомобиль сложную адаптивную систему, которая сможет использоваться без противотуманных огней, а также дневного, дальнего и ближнего освещения, здесь вопрос немного другой. Для создания такой системы необходимо обладать определенными знаниями в сфере устройств управления диодной оптикой.

Разноцветные светодиоды для авто

Если говорить вкратце, то любая система управления LED-оптикой функционирует следующим образом:

  1. Адаптивная оптика может производить настройку светового потока не только от скоростного режима, в котором двигается автомобиль. Если машина оснащена камерами наблюдения, установленными сзади и спереди, то позволит правильно подстраивать световой пучок для того, чтоб не приносить неудобства движущимся навстречу водителям.
  2. Блок управления позволяет улавливать встречный световой пучок и в соответствии с этим отключать необходимые светодиодные секции, которые могут ослепить автолюбителя.

Режимы работы светодиодной оптики

Если вы решили установить светодиодные фары своими руками, то вам полезно будет узнать о режимах работы такого типа оптики.

В зависимости от производителя, оптический блок управления может иметь несколько режимов функционирования:

  • городской;
  • режим непогоды (дождевой);
  • всепогодный режим;
  • высокоскоростной;
  • а также режим проезда сложных перекрестков (автор видео — Большой тест-драйв).

В результате этого для того, чтобы отрегулировать уровень и положение светового пучка не обязательно осуществлять полное изменение угла освещения. Чтобы сделать это, достаточно будет только отключить те несколько диодных элементов, которые ослепляют водителя встречного транспортного средства. Вы от этого не пострадаете, а водитель встречного авто не будет «ослепнут». Следует отметить, что автомобильный концерн Ауди не так давно осуществлял испытания различных систем адаптивного света, результаты этих испытаний получились интересные.

В частности, глухое затемненное пятно четко охватывало именно ту зону, где блок управления фиксировал встречный световой пучок. И даже если этот пучок перемещался в разные стороны, темное пятно без замедления следовало за ним. Более того, на качестве светового пучка транспортного средства это никак не отразилось. Тень попросту охватывала встречный свет, но при этом необходимые для автомобилиста участки дороги всегда были хорошо освещены.

Разумеется, компания Ауди занимается производством только высококачественных систем освещения, здесь не поспоришь. Если же остановить свой выбор на удешевленных китайских вариантах, то здесь ситуация несколько другая. Во-первых, такие системы могут быть оснащены только несколькими функциями режимов — к примеру, только всепогодный и дождевой или дождевой и городской. Во-вторых, на более дешевых вариантах качество действительно оставляет желать лучшего.

Не факт, что «умный» блок управления, который автоматически регулирует направление светового потока, окажется по-настоящему умным. Поэтому при выборе оптики лучше не останавливать свой выбор на дешевых вариантах — как-никак, речь идет о безопасности человека за рулем. На видео ниже вы сможете посмотреть, как выглядит тюнингованная оптика головного света на автомобиле Лада Приора (автор видео — Александр Кулешов).

Замена обычной лампы на светодиодную

Если вы хотите улучшить освещение и установить на свой автомобиль диодные лампочки вместо обычных, вам пригодится эта инструкция. Процедура замены, в принципе, не особо сложная, поэтому с таким процессом сможет справиться даже начинающий автолюбитель. Необходимо просто произвести установку специальных диодных лент для украшения дизайна салона или для замены задних габаритов. Все, что вам потребуется — это только паяльник, сами диоды, а также сопротивление на 470 Ом. Одно сопротивление подключается к каждому отдельному диоду.

  1. Итак, вам потребуется взять старую сгоревшую лампочку из задней габаритной фары либо приборной панели, это не принципиально. Из этой лампы необходимо удалить стеклянную колбу, а также все, что находится внутри.
  2. Следующим этапом будет пайка. С помощью паяльника вам необходимо будет припаять пять диодных компонентов минусом к массе цоколя. При этом плюс светодиода через цоколь нужно будет припаять к плюсовому контакту цоколя лампочки.
  3. Полученную конструкцию необходимо залить специальным термоклеем либо эпоксидной смолой. В итоге устройство устанавливается в патрон. Посмотрите на получившийся результат — если все диодные элементы горят правильно, то установите систему в оптику и наслаждайтесь ярким светом. При монтаже стекла к фаре саму конструкцию по всему периметру следует обработать герметиком. Если вы этого не сделаете, в фару будет попадать влага и пыль, что приведет к появлению конденсата и загрязнению. Соответственно, качество светового потока будет значительно хуже. Естественно, без блока управления обширный функционал, о котором мы сообщали ранее, вам будет недоступен.

Как вы понимаете, диодное освещение — это сравнительно новая технология, но как показывает история, технологии подобного типа со временем становятся неотъемлемой частью любой оптики. Не забывайте о том, что экономия в этом вопросе не всегда целесообразна, поскольку в дешевых системах в любом случае будет хромать качество.

Извините, в настоящее время нет доступных опросов.

Видео «Самостоятельная установка диодной ленты в оптику автомобиля ВАЗ 2110»

На примере фар ВАЗ 2110 вы можете ознакомиться с процессом установки светодиодной ленты в оптику автомобиля (автор видео — Вячеслав Шитов).

Устройство и принцип работы лазерных фар

Высокие технологии в автомобилестроении внедряются постоянно. Автомобильная светотехника также не стоит на месте. На смену светодиодным, ксеноновым и биксеноновым источникам света пришли лазерные фары. Не многие автопроизводители могут похвастаться подобными технологиями, но уже ясно, что это будущее автомобильного освещения.

Что такое лазерные фары

Впервые новая технология была представлена в концепте BMW i8 в 2011 году. Уже через несколько лет в 2014 году модель пошла в серийное производство. Это был тот случай, когда прототип стал полноценным серийным суперкаром.

Читать еще:  Троит двигатель и мигает «чек»: почему так происходит и что делать водителю

Лазерные фары

Разработкой вместе с производителями занимаются и ведущие компании в производстве автомобильного освещения: Bosch, Philips, Hella, Valeo и Osram.

Это сложная система с электронной начинкой, создающая мощный лазерный луч. Система включается на скорости свыше 60 км/ч, когда автомобиль двигается вне городской черты. В городе работает обычное освещение.

Как устроены лазерные фары

Свет лазерных фар принципиально отличается от дневного или любого другого искусственного источника. Получаемый луч когерентный и монохромный. Это значит, что он имеет постоянную длину волны и одинаковую разность фаз. В чистом виде он представляет собой точечный пучок света, который в 1 000 раз интенсивнее диодного света. Лазерный луч дает поток света мощностью в 170 люменов, против 100 люменов от светодиодов.

Разница в световых потоках

Изначально луч имеет голубой цвет. Чтобы получить яркий белый свет, он проходит через специальное люминофорное покрытие. Оно рассеивает направленный лазерный пучок, образуя мощный световой поток.

Лазерные источники света не только мощнее, но и вдвое экономичнее светодиодных. А сами фары намного меньше и компактнее привычных конструкций.

Если брать во внимание технологию BMW, то в качестве флуоресцентного рассеивающего материала выступает кубический элемент, заполненный желтым фосфором. Голубой луч проходит через элемент и получается яркое излучение белого света. Желтый фосфор образует свет с температурой 5 500 К, что максимально приближено к привычному для нас дневному свету. Такое освещение не напрягает глаза. Специальный отражатель концентрирует до 99,95% светового потока в нужном месте перед автомобилем.

Дальний свет «бьет» до 600 метров. Другие же варианты ксеноновых, диодных или галогенных фар показывают дальность не больше 300 метров, а в среднем и вовсе 200 метров.

Мы часто связываем лазер с чем-то ослепительным и ярким. Может показаться, что такое освещение будет ослеплять людей и движущиеся навстречу автомобили. Это совсем не так. Испускаемый поток не ослепляет других водителей. Кроме того, такое освещение можно назвать «умным» светом. Лазерная фара анализирует дорожную ситуацию, подсвечивая только те области, которые необходимы. Разработчики уверены, что в недалеком будущем светотехника автомобиля будет распознавать препятствия (например, диких животных) и предупреждать водителя или брать управление тормозной системой под свой контроль.

Лазерные фары разных производителей

На сегодняшний день данную технологию активно внедряют два автогиганта: BMW и AUDI.

В BMW i8 две фары, каждая из которых имеет по три лазерных элемента. Пучок проходит через элемент с желтым фосфором и систему отражателей. На дорогу свет попадает в рассеянном виде.

Лазерные фары BMW

Каждая лазерная фара от Audi имеет по четыре лазерных элемента с диаметром сечения 300 микрометров. Длина волны каждого диода составляет 450 нм. Глубина исходящего дальнего света порядка 500 метров.

Преимущества и недостатки

  • мощный свет, который не напрягает глаза и не вызывает их усталости;
  • интенсивность освещения намного сильнее, чем, например, светодиодного или галогенового. Длина – до 600 метров;
  • не ослепляет встречных водителей, подсвечивая только ту область, которую нужно;
  • потребляют в два раза меньше энергии;
  • компактный размер.

Среди минусов можно назвать только один — высокая стоимость. А к стоимости самой фары стоит еще добавить периодическое обслуживание и настройку.

Тест «умных» лазерных фар от «ПМ»

Представьте себе картину: вы подходите к пешеходному переходу и ожидаете, когда машины остановятся, чтобы пропустить вас. Автомобили замирают, и прямо на «зебре» появляется движущаяся стрелка, приглашающая вас перейти дорогу в полной безопасности. Откуда берется это изображение? В дорогу встроен защищенный дисплей, на фонарном столбе установлен проектор?

Нет, анимация демонстрируется фарами автомобиля, который остановился, чтобы вас пропустить. Эту и многие другие перспективные технологии «Популярной механике» продемонстрировали специалисты компании Audi, которые убеждены: фары для автомобиля — что глаза для человека, и средство общения, и зеркало души.

Применив устройство с микрозеркалами DMD, аналогичное используемым в видеопроекторах, инженеры наделили лазерную фару практически безграничными возможностями, среди которых создание неограниченного количества теневых зон и проецирование графики на дорогу.

Дорожный кинотеатр

О том, как устроены лазерные фары, мы подробно писали в июле прошлого года. Таким прожектором уже щеголяет пусть и редкий, но все же серийный спорткар Audi R8 LMX. Четыре лазерных светодиода диаметром всего 0,3 мм каждый формируют единый монохромный синий луч с длиной волны 450 нм. Лазерный луч не является источником света, а служит лишь поставщиком энергии для фосфорного конвертера. Его флуоресцирующий состав излучает видимый свет.

Преимущества лазерных фар мы по достоинству оценили в тоннеле: их ближний свет буквально заливал все пространство, в то время как светодиодные фары лишь проявляли очертания удаленных объектов в сумерках. Дальность действия лазерных фар вдвое больше, чем у традиционных аналогов, и может достигать 600 м. Важно, что их свет по цветовой температуре (5500 К) максимально близок к дневному, приятен для глаз и не вызывает усталости.

Очевидно, что столь мощный прожектор может применяться лишь совместно с автоматической системой управления дальним светом: ослепление встречных водителей по невнимательности должно быть полностью исключено. На Audi R8 LMX видеокамера постоянно отслеживает присутствие встречного и попутного транспорта и при необходимости мгновенно приглушает свет.

Создавая перспективную технологию матрично-лазерных фар, инженеры пошли дальше и объединили конструкции лазерного прожектора и видеопроектора. От последнего фаре достался DMD (digital micromirror device) — устройство с цифровыми микрозеркалами. Оно представляет собой матрицу из сотен тысяч микроскопических зеркал, каждое размером в несколько сотых миллиметра. Зеркала крепятся на полупроводниковой подложке-микросхеме посредством микропетель. С помощью электростатического поля они могут поворачиваться на разные углы с частотой до 5000 раз в секунду, отражая больше или меньше света от фосфорного корректора в фокусирующую линзу.

Превратив фару в видеопроектор, инженеры Audi убили сразу двух зайцев. Во‑первых, они наилучшим образом решили проблему ослепления других участников движения. Матрично-лазерная фара может создавать для них неограниченное количество теневых зон, при этом непрерывно освещая дорогу ярчайшим дальним светом.

Световая сфера изготовлена по технологии объемной формовки печатных плат MID. Она содержит 52 интегрированных светодиода и все необходимые проводники для питания и управления ими. Также на фото OLED-пластины, световые волокна, оптоволоконная ткань.

Во-вторых, DMD превращает фару в средство коммуникации и помощи водителю. Мощный лазерный дальний свет требуется только за городом на скоростях свыше 60 км/ч. В городе же он может служить подсказкой. В узких местах строительных зон и тесных парковок фара может проецировать прямо на дорогу линии габаритов машины, чтобы было проще соотнести ширину кузова с имеющимся пространством. В сумерках она подсветит дорожные знаки, чтобы они не остались незамеченными.

Возможно, в будущем такие фары будут проецировать на дорогу контрастный узор непосредственно перед автомобилем, чтобы предупреждать о его появлении из-за угла. А движущиеся стрелки на «зебре» подскажут пешеходу, что автомобиль полностью остановился и можно смело переходить дорогу.

Световой росчерк

Оказывается, живые концерты могут давать не только музыканты, но и художники. Глава департамента дизайна светотехнических приборов Сезар Мунтада Роура, собрав журналистов вокруг своего стола, берет большой лист фактурного черного картона и белым карандашом подчеркнуто размашистыми движениями воссоздает динамичный образ Audi TT. Он объясняет, как не больше десятка ниспадающих линий определяют агрессивный и узнаваемый стиль спортивного автомобиля. А затем финальным аккордом Сезар наносит буквально пару штрихов, демонстрируя, насколько полно те же ценности можно передать с помощью дизайна фар.

Концепция световой подписи Audi предполагает, что каждая модель фирмы будет щеголять собственным уникальным рисунком дневных ходовых огней, раскрывающим характер автомобиля, от агрессивных диагоналей ТТ до основательных параллелей Q7. Эволюция дневных ходовых огней на моделях Audi последних лет наглядно демонстрирует, насколько быстро развиваются световые технологии: если в 2008 году ходовые огни состояли из нескольких отчетливо различимых светодиодов, то сегодня они представляют собой абсолютно однородные (или, как говорят специалисты, гомогенные) светящиеся полосы.

Для рассеивания света в таких случаях применяется полимерный материал, внешне напоминающий оргстекло, внутри которого содержится множество воздушных пузырьков. От диаметра и количества этих полостей зависят характеристики светового элемента — гомогенность, яркость, экономичность. Современные рассеиватели позволяют использовать намного меньше светодиодов, располагая их на расстоянии более десяти сантиметров друг от друга. Перспективным материалом для рассеивателей считаются вспененные полимеры, подкупающие своим малым весом и полной свободой в изготовлении сложных форм.

Читать еще:  Снятие и замена генератора ваз 2108, 2109, 21099

Скульптура «Матрица органических светодиодов Audi» призвана наглядно продемонстрировать, что специалисты компании подразумевают под 3D-дизайном световых приборов. По мере того, как зритель движется вокруг, она постоянно изменяется, и только в одном ракурсе десятки маленьких пластинок складываются в четкую надпись Audi.

Вероятно, следующее поколение дневных ходовых огней будет использовать световые волокна — гибкие нити, изготовленные из полимерных материалов или кварцевого стекла. Они удобны в плане компоновки, так как позволяют размещать источник света глубоко внутри корпуса фары. Волокна могут излучать свет с торца (оптоволоконный проводник) или по всей длине. Из них можно создавать тканые светящиеся полотна.

Специалисты Audi считают одной из главных тенденций в дизайне световых приборов трехмерность: с разных ракурсов они должны выглядеть по‑разному, создавая причудливую игру сложных форм. Реализовать непростые художественные идеи поможет технология формованных печатных плат MID (molded interconnected device). Трехмерный каркас MID отливается из металла, покрытого полимером. Электрическая схема наносится на него с помощью лазера: полимер испаряется, обнажая металл. Получившиеся металлические контуры усиливаются с помощью гальванизации — теперь они могут питать мощные светодиоды.

Новый спорткар Audi R8 получил лазерные фары в качестве серийного оснащения. Они оснащены как лазерным, так и светодиодным модулем дальнего света. В зависимости от дорожной ситуации используется свет разной интенсивности.

Важнейшая технология фар будущего — кремниевые линзы. Они позволяют создавать очень малые радиусы кривизны, что, в свою очередь, означает малые размеры самой линзы по сравнению со стеклянным аналогом. Кремний легче стекла и лучше переносит высокие температуры.

Голубая мечта инженеров и дизайнеров Audi — автомобиль, целиком покрытый слоем из органических светодиодов OLED, весь светящийся и демонстрирующий видеоэффекты высокого разрешения. Теоретически это возможно, так как отдельные излучающие свет элементы OLED имеют микроскопические размеры и могут наноситься на подложку очень тонким слоем. Однако добиться такого на практике в обозримом будущем не удастся: органические светодиоды слишком чувствительны к перепаду температур и не выносят контакта с водой. Поэтому пока что они требуют защиты толстым слоем стекла, которое можно изгибать только в одной плоскости.

Лазерный противотуманный фонарь (на фото), скорее всего, появится на рынке очень скоро — как только будет одобрен регулирующими органами. Трехмерные габаритные огни на основе изогнутых OLED-пластин также весьма близки к серии. А вот взбалмошная анимация во всю заднюю дверь всего лишь имитирует с помощью проекции гибкое OLED-покрытие, которое, возможно появится в отдаленном будущем.

Хайтек под присмотром

Кроме концептуальных световых приборов, которые если и пойдут в серию, то только через десяток-другой лет, в лабораториях Audi разрабатываются остроумные решения, которые готовы к этому уже завтра. Один из самых впечатляющих образцов — лазерный противотуманный фонарь. Он представляет собой красный сканирующий лазер, рисующий на дороге позади автомобиля тонкую поперечную полоску. Только и всего.

В ясную погоду эта полоска практически незаметна другим участникам движения. В отличие от традиционной задней противотуманки, она не слепит водителей и не отвлекает их, даже если нерадивый хозяин забыл ее выключить. Зато в тумане становится виден сам лазерный луч, и за автомобилем проявляется яркий красный треугольник.

Светотехника — весьма консервативная отрасль. Работа световых приборов имеет самое непосредственное отношение к безопасности движения, поэтому их строение и характеристики жестко регламентированы государственными органами. В тесном контакте с дизайнерами и технологами работают лоббисты, демонстрирующие чиновникам новые разработки и обосновывающие их пользу для безопасности дорожного движения.

Для некоторых разработок, таких как лазерный противотуманный фонарь, именно законодательство является основным или единственным препятствием для внедрения в серию. К счастью, опыт показывает, что это препятствие временное. Иначе мы не увидели бы на наших дорогах автомобили Audi, щеголяющие динамическими указателями поворотов и мерцающими при резких торможениях стоп-сигналами.

Лазерные фары: что это и как это работает?

Еще недавно слово “ксенон” вызывало восхищение и уважение окружающих, а биксенон и подавно. Казалось бы, все уже придумано и развиваться автомобильной оптике больше некуда, однако создатели лазерных фар так не считают.

Светодиодные фары как, впрочем, и любые другие революционные для своего времени фары, до появления лазерных фар считались наиболее эффективным источником освещения, который по сей день активно используют автопроизводители в своих автомобилях. Кстати серийный выпуск светодиодных фар могут сегодня позволить себе далеко не все автогиганты, как правило, такими фарами оснащаются автомобили премиум-сегмента.

С лазерными фарами все еще более сложно и запутано, эти фары являются достижением высоких технологий, а для их создания необходимы особые условия и множество различной электроники, которая собственно и создает лазерный луч. В данной области активно работают ведущие производители автомобильной светооптики такие как: Osram, Philips, Valeo, Bosch и Hella.

Кроме ведущих производителей источников освещения лазерными фарами очень заинтересованы автопроизводители. Так в 2011 году лазерные фары были представлены компанией BMW, которая продемонстрировала собственные достижения в этой области на своем концепте под кодовым названием i8. Тот, кто следит за событиями в BMW помнит, как через несколько лет концепт превратился в полноценный серийный суперкар.

Лазерные фары BMW i8 видео

Спустя еще несколько лет такие фары стали появляться на других моделях “БМВ”. Лазерный модуль BMW был разработан инженерами компании Osram. Несмотря на дороговизну самой технологии, а также стоимость комплектующих и разработок, лазерные фары получили одобрение руководства, которое даже не смутил тот факт, что наличие лазерных фар существенно скажется на итоговой стоимости всего автомобиля. Более важным для разработчиков и руководителей проектов было первенство в данной области, а также то преимущество которое получит покупатель после покупки их детища.

Второй автогигант Audi — не менее активно работает в “лазерном направлении”. Впервые лазерные фары получили Audi R18 E-Tron Quattro, а также концепт Audi Sport Quattro Laserlight. Характерным отличием лазерных фар производства “Ауди” является то, что активация лазерных модулей происходит на скорости 60 км/час и выше. До этой отметки дорогу освещают “обычные” светодиодные фары.

Лазерная фара производства Audi состоит из четырех мощных лазерных диодов, их диаметр тела свечения равен – 300 микромет­рам. Эти диоды способны генерировать световой луч синего цвета с длиной волны порядка 450 нм. Благодаря специальному флуоресцентному преобразователю синее свечение превращается в белое (цветовая температура 5500 К). Такой свет по мнению производителей наиболее приятен для глаз и практически не вызывает усталости. Длина самого светового луча составляет порядка 500 метров.

В отличие от привычных нам источников света (лампы накаливания, газоразрядные лампы, светодиоды) лазерные фары обладают множеством “плюсов”. Все начинается с того, что лазерное излучение монохромно и когерентно, другими словами волны постоянно одинаковой длины при постоянной разности фаз.

Перечислим плюсы лазерных фар

  • Это позволяет формировать пучок света, который очень близок по своей сути к параллельному, (дает возможность освещать конкретную зону).

  • Лазерный луч в десять сильнее по сравнению с галогенками, а также ксеноном и светодиодами. Протяженность лазерного луча достигает отметки в 600 метров, при том, что обычный дальний свет может похвастаться только 200-300 мет­рами (а ближний и того хуже всего 60–85 метров).
  • Лазерные фары не слепит так как ксенон, поскольку луч света направлен строго в ту точку, которая должна освежаться. В случае попадания в область освещения живого существа, например, человека часть диодов тут же отключится и подсветит все кроме той области в которой находится живой объект.
  • Фары лазерные имеют на 30% меньшее энергопотребление нежели классические аналоги.
  • Компактность еще один “плюс” в пользу лазерных фар, их по праву можно смело назвать самыми компактными из всех сущест­вующих. Площадь светоизлучения лазерного диода в сто раз меньше по сравнению с обычным светодиодом, в этой связи при одинаковой светоотдаче лазерная фара требует отражателя размером всего 30 мм в диаметре (для сравнения у ксенона – 70 мм, у галогенок вообще — 120 мм). Такие способности лазерных фар позволили инженерам существенно уменьшить размер фар, не потеряв при этом а наоборот прибавив эффективности освещения.

Несколько слов о том, как это работает

Работать лазерный головной свет будет в тесном взаимодействии с компьютером, который руководствуясь данными с датчиков будет следить за тем, чтобы встречные автомобили и пешеходы не ослеплялись. Каждая лазерная фара содержит три диода излучающих световой луч мощностью около 1 Вт. Лучи посредством системы зеркал перенаправляются на флуоресцентный элемент после поглощения энергии последним, происходит выделение белого свечения, который формируется в световой луч.

Читать еще:  Поверка и калибровка манометров, рекомендации, как проверить прибор самостоятельно

В процессе разработки лазерных фар возникла еще одна новая технология под названием Dynamic Light Spot (в перевод с анг. — динамическое точечное освещение). Данная разработка позволяет обнаруживать пешеходов, а также другое препятствие на пути автомобиля посредством инфракрасной камеры. После того как система обнаружит преграду она автоматически подсвечивается более интенсивным светом, для того чтобы водитель мог обратить на нее внимание и безопасно его преодолеть. Что характерно, подсказка для водителя появляется с некоторым опережением, то есть до того, как объект будет подсвечен лучами ближнего света. Это необходимо для того чтобы обезопасить водителя и дать ему возможность подготовиться к выполнению тех или иных маневров и действий.

Лазерные фары Audi видео

ФараИнфо

4 метода восстановления отражателей фар

Резкий рост цен на зарубежный автотранспорт обусловил повышение и без того высоких цен на запчасти. Новые правила дорожного движения, которые обязывают водителя двигаться с включённым ближним светом в дневное время суток, намного ускоряют выгорание такого элемента фары, как рефлектор. Найти в магазине деталь очень трудно, а чаще всего, вовсе невозможно. Приходится заказывать новую фару, стоимость которой велика. Но есть способ менее затратный. Починить неисправную деталь самостоятельно.Не знаете, как восстановить отражатель фары? Прочитайте данную статью и узнайте все способы, благодаря которым можно без труда исправить рефлектор.

Какие бывают отражатели?

В разных моделях автомобилей устанавливаются отличные отражатели.

Выбор того или иного типа зависит от ряда факторов:

  • мощность лампочки;
  • количество нитей накаливания;
  • вид лампочки.

К последнему пункту относятся обыкновенные осветительные приборы, а также галогенные устройства.

На современных автомобилях можно встретить 4 вида рефлекторов.

  1. Параболический. Форма устройства напоминает геометрическую параболу. Фокусировка светового потока происходит преимущественно за счёт отражения лучей от верхней части рефлектора. Данный тип позволяет использовать лампочки с двойными нитями накаливания.
  2. Бифокальный. По форме похож на параболический, но нижняя часть отражателя имеет более пологое направление. Этот фактор позволяет интенсивнее использовать нижние лучи света, направляя их на участок перед автомобилем. Такое строение исключает возможность использования лампочек с двумя нитями накаливания. Поэтому для дальнего света автомобили снабжают дополнительной парой фар.
  3. Софокусный. Имеет несколько отражающих частей, конструкция которых позволяет лучам света сходиться в один фокус (направление). Такая конфигурация позволяет усиливать световой поток, что сказывается на качестве освещения дорожного пространства. Лампа с двумя нитями накаливания здесь приемлема.
  4. Полиэлипсоидальный. Конструкция отражателя, совместно с прожекторной оптикой, позволяет получать фокусированный луч на поверхности менее чем 30 см2. Более того, дополнительные системы электронного управления световым потоком обеспечивают контроль положения границы освещённости. Данный тип фар широко применяется для грузовых машин, фур и автобусов. Осветительная лампа сюда подходит только с одной нитью накаливания. Поэтому автомобили, снабжённые полиэлипсоидальным рефлектором,имеют четыре фары.

Кроме особенностей строения отражающей линзы, рефлекторы отличаются по материалу изготовления.

Они могут быть изготовлены из:

  • термопласта;
  • реактопласта;
  • специализированного стекла;
  • металла (верхний слой – хром).

В современных иностранных моделях автомобилей используется реактопласт. Этот материал представляет собой гладкую пластмассу, поверхность которой позволяет наносить отражающий слой без промежуточной выравнивающей прослойки.

В отличие от термопласта, реактопласт имеет большую стойкость к продолжительному воздействию повышенной температуры. Небольшая масса, а также достаточная прочность являются явным преимуществом такого материала перед стеклом и металлом.

Как восстановить отражатель?

Рефлектор фары очень часто выходит из строя, так как отражающее покрытие имеет свойство выгорать и тускнеть.Кроме этого, фара подвергается резким перепадам температур, особенно в зимний период. Нарушение герметичности, попадание влаги, и даже обыкновенный камень, вылетевший из-под колеса грузовика легко способен повредить отражатель.

Восстановление отражателей фар своими руками может проходить несколькими способами.

  1. С использованием фольги.
  2. Оклейка плёнкой.
  3. Проклейка металлизированного скотча.
  4. Хромирование краской.

Каждый метод имеет свои недостатки и достоинства. Конечно, отремонтированная фара по своим функциональным характеристикам не сравниться с новым изделием, приобретённым на заказ. Но тот необходимый минимум, который должен обеспечивать отражатель по установленным законом нормам, ремонт своими руками обеспечит.

Перед тем, как непосредственно получить доступ к рефлектору, необходимо разобрать автомобильную фару.

Для этого нужно снять решётку радиатора. В каждой модели авто она откручивается по-разному. Далее откручиваются крепёжные болты самого осветительного устройства. Они расположены на переднем бампере, радиаторе. После этого производится отключение штекера питания и, при наличии, выкручиваются оставшиеся болты в задней части рефлектора.

После получения доступа к отражающему элементу, его необходимо отделить от лампочки, а также переднего пластикового корпуса. После этого приступают к очистке рефлектора от старой краски, его обезжиривания и просушки. Далее можно переходить к оклейке светоотражающего материала.Давайте более подробно рассмотрим каждый способ.

Фольга

Перед началом работы необходимо повторно протереть отражатель от пыли. После этого подготавливают шаблоны, чётко повторяющие очертания поверхности рефлектора.

Совет. По возможности, делается как можно меньше отдельных кусочков фольги. Чем меньше будет стыков, тем качественнее получится отражающий эффект, и тем безопаснее будет езда на автомобиле ночью.

Изготовление выкройки необходимо для того, чтобы получить идеально ровную гладь, что является важным требованием. Получившиеся шаблоны прикладывают к фольге, и по их размерам вырезают аналогичные части.

Используемая фольга обязательно должна быть новая и идеально гладкая, без изломов и неровностей. Учтите, чем больше дефектов будет на ней, тем хуже у вас получится сфокусировать свет фары.

Клей удобнее наносить на фольгу. При такой последовательности кусочки легче клеятся и меньше повреждаются. Клеящий состав должен быть устойчивым к низким и высоким продолжительным воздействиям температуры, а также к резким перепадам. После оклейки нужно проверить качество получившейся глади. При наличии неровностей, их разглаживают чистой тряпкой.

После проведения работ фара должна полежать сутки в тёплом помещении открытой. Далее можно собирать устройство обратно. Для предотвращения попадания влаги все стыки необходимо пройти специальной клеящей герметикой, дать дополнительные сутки для набора прочности.

Перед использованием фара тестируется в обязательном порядке.

Плёнка

Использование стекло отражающей плёнки является более профессиональным методом. Порядок производства работ аналогичен предыдущему варианту. Рефлектор очищается, обезжиривается, просушивается. По подготовленным шаблонам вырезаются кусочки плёнки.

Совет. Очень качественная плёнка выпускается под маркой Oracal. Такое изделие используется в сервисах ауди. В продаже имеются разные серии, поэтому перед покупкой проконсультируйтесь с продавцом магазина.

Далее наносится клеящий состав, который также можно приобрести в магазине автозапчастей. После оклейки светоотражателя, поверхность нужно аккуратно разгладить и просушить строительным феном. Под воздействием горячего потока воздуха, клей высыхает за 5-10 минут.

Металлизированный скотч

Такой скотч продаётся в каждом строительном магазине. Его несомненным достоинством является относительная дешевизна, а также простота монтажа. Изделие продаётся уже с нанесённым слоем клея, поэтому вам остаётся только приклеить его на поверхность отражателя, тщательно разгладить и отрезать лишние кусочки. Рефлектор обязательно должен быть очищен от старой краски, обезжирен, а так же просушен.

Хромирование

Данный метод не случайно занимает последнюю позицию среди других. Рефлектор, отремонтированный покраской, не отличается высоким отражающим эффектом. Это обусловлено свойствами красящего состава.

Фару подготавливают, чистят, сушат. Далее производится распыление баллончика с краской. Необходимо наносить равномерный слой, не допускать подтёков.В качестве красящего состава используется алкидная или акриловая краска. Также в магазине автозапчастей можно найти специализированный состав, предназначенный для этих целей.

Другие способы

Очень часто водители, отвечая на вопрос как восстановить отражатели фар своими руками, советуют применять метод гальванизации. Его суть состоит в том, что в ванну с водой помещается два элемента: один из которых содержит частицы хрома, а другим является рефлектор фары. Создают электрическую цепь, через которую пускают ток. При этом частицы хрома переносятся на светоотражатель. Такой способ возможен, только если отражатель изготовлен из металла, то есть способен пропускать через себя электрический ток. При этом качество отражающей поверхности получается неудовлетворительное.

Стоит понимать, что перечисленные способы не вернут фаре заводской функциональности. Современные технологии предполагают применение вакуумной методики, гидрокорректоров, а также других профессиональных способов.

Починить фару своими руками можно, но только на короткий промежуток времени. Пока вы ищете, где заказать новый рефлектор, починить испортившийся старый – верное решение.

Ссылка на основную публикацию
Adblock
detector